1 / 14

5.1 Fundamental Trig Identities

Reciprocal Identities. 5.1 Fundamental Trig Identities. sin (  ) = 1 cos (  ) = 1 tan (  ) = 1 csc ( ) sec () cot () csc (  ) = 1 sec (  ) = 1 cot (  ) = 1 sin ( ) cos () tan (). Quotient Identities.

zandra
Download Presentation

5.1 Fundamental Trig Identities

An Image/Link below is provided (as is) to download presentation Download Policy: Content on the Website is provided to you AS IS for your information and personal use and may not be sold / licensed / shared on other websites without getting consent from its author. Content is provided to you AS IS for your information and personal use only. Download presentation by click this link. While downloading, if for some reason you are not able to download a presentation, the publisher may have deleted the file from their server. During download, if you can't get a presentation, the file might be deleted by the publisher.

E N D

Presentation Transcript


  1. Reciprocal Identities 5.1 Fundamental Trig Identities sin () = 1 cos () = 1 tan () = 1 csc () sec () cot () csc () = 1 sec () = 1 cot () = 1 sin () cos () tan () Quotient Identities tan () = sin() cot () = cos() cos() sin () Pythagorean Identities Even-Odd (Negative Angle) Identities sin2 () + cos2 () = 1 1 + tan2 () = sec2 () 1 + cot2 () = csc2 () sin(-x) = -sin (x) csc(-x) = -csc(x) cos(-x) = cos (x) sec(-x) = sec(x) tan(-x) = -tan (x) cot(-x) = -cot(x)

  2. 5.1 Practice Problems • If tan (θ) = 2.6 then tan (-θ) = ________ • If cos (θ) = -.65 then cos (-θ) = _______ • If cos (θ) = .8 and sin (θ) = .6 then tan (- θ) = ________ • If sin (θ) = 2/3 then –sin(- θ) = ___________ • Find sin(θ), given cos(- θ) = √5/5 and tan θ < 0 (Hint: Use sin2θ + cos2θ= 1) • Find sin(θ), given sec θ = 11/4 and tan θ < 0 • Find ALL trig functions given cscθ = -5/2 and θ in Quad III

  3. Identity Matching Practice #1 (cos x)/(sin x) = ________ A. sin2 x + cos2 x #2 tan x = _________ B. cot x #3 cos (-x) = ___________ C. sec2 x #4 tan2x + 1 = ______ D. (sin x)/(cos x) #5 1 = ________ E. cos x

  4. More Identity Matching Practice #1 –tan x cos x = ________ A. (sin2 x) / (cos2 x) #2 sec2x - 1 = _________ B. 1 / (sec2 x) #3 (sec x) / (csc x) = ___________ C. sin (-x) #4 1 + sin2x = ______ D. csc2 x – cot 2 x + sin2 x #5 cos2 x = ________ E. tan x

  5. More Practice: Simplify in terms of sine and cosine • Cot θ sin θ • Sec θ cot θ sin θ • (sec θ – 1)(sec θ + 1) • sin2 θ (csc2θ – 1)

  6. 5.2 Verifying Identities Identity – An equation that is satisfied for all meaningful replacements of the variable Verifying Identities – Show/Prove one side of an equation actually equals the other. Example: Verify the identity: cot  + 1 = csc (cos  + sin ) = 1/sin  (cos  + sin ) = (1/sin ) cos  + (1/sin ) sin  = cos  / sin  + sin  / sin  = cot  + 1 We will do other examples in class • Techniques for Verifying Identities • Change to Sine and Cosine • 2. Use Algebraic Skills – factoring • 3. Use Pythagorean Identities • 4. Work each side separately • (Do NOT add to both sides, etc) • 5. For 1 – sin x, try multiplying • numerator & denominator by • 1 + sin x to obtain 1 = sin2 x

  7. Verify the Following Identities • Cot θ / csc θ = cos θ • (1 – sin2β) / cos β = cos β • (Tan α)/(sec α) = sin α • (Tan2α + 1) / sec α = sec α • Cos2θ (tan2θ + 1) = 1 • Sin2 x + tan2 x + cos2 x = sec2 x • Cos x /sec x + sin x/csc x = sec2x - tan2x

  8. Verify more challenging Identities • Tan x + cos x / (1 + sin x) = sec x • Cos4 x – sin4 x = 1 – 2sin2 x • (Sec x – tan x)2 = (1 – sin x)/(1 + sin x) • (cos2 x – sin2 x) / (1 – tan2 x) = cos2 x • (Sec x + tan x)/ (sec x – tan x) = (1 + 2 sin x + sin2 x)/cos2 x • (sec x – csc x)/(sec x + csc x) = (tan x – 1)/(tan x + 1)

  9. 5.3 & 5.4 Sum and Difference Formulas cos ( + ) = cos  cos  - sin  sin  cos ( - ) = cos  cos  + sin  sin  sin ( + ) = sin  cos  + cos  sin  sin ( - ) = sin  cos  - cos  sin  tan ( + ) = tan  + tan  1 - tan  tan  tan ( - ) = tan  - tan  1 + tan  tan  Co-Function Identities sin () = cos (90 - ) cos () = sin (90 - ) tan () = cot (90 - ) cot () = tan (90 - ) sec () = csc (90 - ) csc () = sec (90 - )

  10. 5.3 & 5.4 Practice Problems Find the exact value of each expression: • Cos 15◦ • Cos (5π/12) • Cos 87 cos 93 – sin 87 sin 93 • Sin (75◦) • Sin 40 cos 160 – cos 40 sin 160 • Tan (7π/12) Use Co-function Identities to find θ • Cot θ = tan 25◦ • Sin θ = cos (-30◦) • Csc (3π/4) = sec θ

  11. 5.5 & 5.6 Double & Half Angle and Power Reducing Formulas Double-Angle sin 2 = 2 sin  cos  cos 2 = cos2  - sin2  = 2 cos2  - 1 = 1 – 2 sin2 tan 2 = 2 tan  1 – tan2  Power Reducing Formulas sin2 = 1 – cos 2 2 cos2  = 1 + cos 2 2 tan2  = 1 – cos 2 1 + cos 2 Half Angle sin  = 1 – cos cos  = 1 + cos  2 2 2 2 tan  = 1 – cos  = sin  = +/- 2 sin  1 + cos  1-cosA 1+cosA

  12. Product-to-Sum & Sum to Product Formulas Sum to Product Product to Sum sin  sin  = ½ [cos ( - ) – cos ( + )] cos  cos  = ½ [cos ( - ) + cos ( + )] sin  cos  = ½ [sin ( + ) + sin ( - )] cos  sin  = ½ [cos ( + ) – sin ( - )] sin  + sin  = 2 sin  +  cos  -  2 2 sin  - sin  = 2 sin  -  cos  +  2 2 cos  + cos  = 2 cos  +  cos  -  2 2 cos  - cos  = -2 sin  +  sin  -  2 2

  13. Double Angle Matching Practice #1 2cos2 15◦ - 1 = ________ A. 1/2 #2 2 tan 15◦= _________ B. √2 / 2 1 – tan2 15◦ #3 2 sin 22.5◦ cos 22.5◦ = ___________ C. √3 / 2 #4 cos2 (π/6) - sin2 (π/6) = ___________ D. - √3 #5 2 sin (π/3) cos (π/3) = _____________ E. √3 / 3 #6 2 tan (π/3) = __________________ 1– tan2 (π/3)

  14. More Double-Angle Practice • Find sin θ+ cosθ, given cos 2θ = ¾ with θ in quadrant III • Cos2 15◦ – sin2 15◦ • Verify the Identity: (sin x + cos x)2 = sin 2x + 1 Product to Sum/Sum to Product Practice • Write 4 cos 75◦ sin 25◦ as the sum or difference of 2 functions • Write sin 2θ – sin 4θ as a product of 2 functions Half-Angle Practice • Find the exact value of cos 15◦

More Related