240 likes | 1.33k Views
Clase 71. Identidades trigonométricas. sen 2 x + cos 2 x = 1. cos(x + y) = cosx cosy – senx seny. sen 2x = 2 senx cos x. Igualdades donde al menos aparece una variable. Ecuaciones. Identidades. Solo se satisfacen para algunos valores del dominio de la varible.
E N D
Clase 71 Identidades trigonométricas sen2x + cos2x = 1 cos(x + y) = cosx cosy – senx seny sen 2x = 2 senx cos x
Igualdades donde al menos aparece una variable. Ecuaciones Identidades Solo se satisfacen para algunos valores del dominio de la varible. Se satisfacen para todos los valores del dominio de la varible.
sen x tan x = cos x cos x cot x = sen x 1 1 1 + tan2x = 1 + cot2x = cos2 x sen2 x Identidades fundamentales sen2x + cos2x = 1 sen2x = 1 – cos2x cos2x = 1 – sen2x
cos(x y) = cos x cos y sen x sen y tan x tan y tan(x y) = 1 tan x tan y Fórmulas de adición sen(x y) = sen x cos y cos x sen y
2 tan x tan 2x = 1 – tan2x Fórmulas del ángulo duplo sen 2x = 2 senx cosx cos 2x = cos2x – sen2x = 1 – 2 sen2x = 2 cos2x –1
Ejercicio 1 Demuestra las siguientes identidades. a) (sen x + cos x)2 = 1 + sen 2x b) sen 3x = 3 sen x – 4 sen3x a) (sen x + cos x)2 = sen2x + 2 sen x cos x + cos2x = 1 + sen 2x se cumple
b) sen 3x = 3 sen x – 4 sen3x sen 3x = sen (x + 2x) = sen x cos 2x + cos x sen 2x + 2 sen x cos2x = sen x (1–2 sen2x) = sen x –2 sen3x +2 sen x (1–sen2x) = sen x –2 sen3x +2 sen x – 2 sen3x – 4 sen3x = 3 sen x se cumple
2 cos2 x 2 c) – tan x = sen 2x sen 2x Ejercicio 2 Demuestra las siguientes identidades para los valores admisibles de la variable. Para el estudio individual a) cos4y – sen4y = cos 2y 4 cot 2x b) cot2x – tan2x = d) cos 3x = 4 cos3x – 3 senx sen 2x
a) cos4y – sen4y = cos 2y cos4y – sen4y 1 = (cos2y + sen2y)(cos2y – sen2y) cos2y – sen2y = = cos 2y se cumple
cos2x sen2x sen2x cos2x 4 cot 2x b) cot2x – tan2x = sen 2x cot2x – tan2x cos4x –sen4x – = = sen2x cos2x 4 cos 2x cos 2x = = sen2x cos2x 4 sen2x cos2x 4 cos 2x 4 cot 2x = = sen2 2x sen 2x se cumple