520 likes | 696 Views
Kinematics of Dwarf Spheroidal Galaxies. Matthew Walker – U. Michigan Collaborators Mario Mateo – U. Michigan Edward Olszewski – U. Arizona, Steward Observatory Bodhisattva Sen – U. Michigan (Statistics) Xiao Wang - U. Michigan (Statistics)
E N D
Kinematics of Dwarf Spheroidal Galaxies Matthew Walker – U. Michigan Collaborators Mario Mateo – U. Michigan Edward Olszewski – U. Arizona, Steward Observatory Bodhisattva Sen – U. Michigan (Statistics) Xiao Wang - U. Michigan (Statistics) Michael Woodroofe – U. Michigan (Statistics) Rebecca Bernstein – U.C. Santa Cruz Oleg Gnedin – U. Michigan Data from Magellan/MMFS and MMT/Hectochelle The Globular Clusters - Dwarf Galaxies Connection Ann Arbor, Aug. 27, 2007
Introduction:Globular Clusters vs. dSphs • Globulars • Pressure supported • 105-6 L_sun • No gas • <v> ~ 10-20 km/s • Single age • Rhalf ~ 10 pc • dSphs • Pressure supported • 105-6 L_sun • No gas • <v> ~ 10-20 km/s • Extended Star formation • Rhalf ~ 100 pc DSS image of Fornax
Introduction: Dwarf Spheroidal Galaxies • Why study dSphs? • Smallest systems with dark matter • Dominated by dark matter (baryons negligible!) • Nearby • Dark Matter – want to know M(r) • M/L • Cusps or cores? • Halo mass function • Galaxy Evolution – want to understand complex stellar populations • Star formation histories • Metallicities/ages • Stellar kinematics • Galactic tides Diemand, Kuhlen and Madau (2007)
MMT + Hectochelle 240 fibers over 30 arcmin 5150 – 5300 A (R ~ 30000) +/- 1-2 km/s velocities for V~20.5 stars in 2 hours exposure time 600 spectra per night! Magellan + MMFS 256 fibers over 20 arcmin 5140-5180 A (R ~ 20000-25000) +/- 1-2 km/s velocities for V~20.5 stars in 2 hours exposure time 600 spectra per night! Observations & Data:Magellan/MMFS and MMT/Hectochelle
Observations & Data: Magellan & MMT Samples ~6800 stars, ~5000 members
Kinematics • 2 tests of Lambda-CDM • Inner Density profile: cusps vs. cores • DM halo mass function • Jeans Equation
Kinematics:Jeans Equation If β=0, If β=0 and constant velocity dispersion,
Kinematics:Mass from Jeans Estimator ASSUMPTIONS -Spherical symmetry -Dynamic equilibrium -Plummer Model for Stars -Anisotropy=0 -σV(R)=constant RESULTS Central cores, but necessarily so
Kinematics: NFW Profiles(Navarro, Frenk & White 1995, 1996, 1997) ASSUMPTIONS -Spherical symmetry -Dynamic equilibrium -Constant anisotropy RESULTS
Kinematics: Non-Parametric Mass Estimation(Wang et al. 2005) ASSUMPTIONS -Spherical symmetry -Dynamic equilibrium -Anisotropy=0 -shape restrictions -M(r) is non-negative and nondecreasing -M(r=0)=0 -ρ(r) is non-increasing
Kinematics: Non-Parametric Estimate, Quadratic vs. Cubic Spline P=2 (quadratic spline) P=3 (cubic spline) P=2 implies M(r) α r2 as r 0. Thus ρ(r) α r-1 (NFW cusp). P=3 implies M(r) α r3 as r 0. Thus ρ(r) =const. (core).
Kinematics: Robust Measure of M(~2rcore)see also Strigari et al. (2007); Penarrubia et al. (2007)
Kinematics:Summary of Mass Profiles • Mass-follows-light models fail. • Dark Matter dominates even the central mass density regardless of model. • Cores vs. cusps? Neither is ruled out by σV(r). • Isotropy, constant velocity dispersion, Plummer models cores • But, cuspy NFW profiles fit the velocity data. • We don’t know the anisotropy. • Halo Mass Function? • M(600pc) = (2-5) x 107 M_sun regardless of model!
Chemo-dynamics:spatially, chemically, kinematically distinct populations?(see also Tolstoy et al. 2004; Battaglia et al. 2006)
Chemo-dynamics:spatially, chemically, kinematically distinct populations?(see also Tolstoy et al. 2004; Battaglia et al. 2006)
Chemo-dynamics: “Tidal Stirring” as Evolutionary Mechanism • Distance-morphology relation • D= 0 -50 kpc Sgr and streams • D= 50 -250 kpc dSph • D> 250 kpc dIrr • Tidal stirring (Mayer et al. 2001, 2005) • Remove gas • Convert rotation to pressure support • Tidal stripping mass lossbar instability decrease in v_rot/sigma gas funneled toward center star formation • Convert dIrr to dSph in 2-3 perigalactic passages (~5-10) Gyr • Implies dIrr are the pristine galactic building blocks
Summary • New spectra of ~ 8000 dSph targets, ~ 5000 members • Flat velocity dispersion profiles • Neither core/cusp ruled out • M(600pc) ~ 2-5 x107 M_sun • Metallicity gradients, metal-rich at center, metal-poor outward, correlated with kinematics
4. Galactic Tides • Tidal disruption simulations: • Velocity Gradient Along Major Axis (Apparent rotation about minor axis) • Major axis aligned with proper motion vector • Rising velocity dispersion profile Read et al. (2006) Piatek & Pryor. (1995)
Galactic Tides:Kinematic Evidence of Tides? Rising Velocity Dispersion? Velocity Gradient? Magellan/MMT data
Galactic Tides: Apparent Rotation? Magellan/MMT data
Galactic Tides: Apparent Rotation? Magellan/MMT data
Substructure Coleman et al. (2004; 2005)
Nonparametric Mass Estimation (Wang et al. 2005) • Assumptions • Spherical symmetry • Dynamical equilibrium • Velocity isotropy • Parametric model • Mass follows light • Jeans Equation where • Estimate f(r) and μ(r) separately • f(r)as a step function, recover from star count data • M(r) as a cubic spline subject to shape restrictions
Recovering f(r) from its Projection • Let • projected density gS(s) relates to 3-D density by • Let • We estimate GS directly from star counts: • Treat f as step function: for
Kormendy 1985 There is a size gap between globular clusters and dE gals, at similar Mv, and similar central velocity dispersion ``ellipticals/bulges, dwarf spheroidal galaxies and globular clusters are three very different kinds of stellar systems’’
Jeans Equation (spherical symmetry) Solution: Projection:
Kinematics: Constant-Density Core(c.f. Strigari et al. 2006) ASSUMPTIONS -Spherical symmetry -Dynamic equilibrium -Constant Anisotropy RESULTS
Kinematics: Robust Measure of M(rcore) Penarrubia et al. 2007