1 / 21

Lecture 5I Function Approximation

Lecture 5I Function Approximation. Data driven function approximation Projective hyper-tangent function. Interpolation vs approximation. Polynomial interpolation Constraints: f(x i )=y i for all I Polynomial approximation Minimization of mean square error Non-polynomial approximation

emele
Download Presentation

Lecture 5I Function Approximation

An Image/Link below is provided (as is) to download presentation Download Policy: Content on the Website is provided to you AS IS for your information and personal use and may not be sold / licensed / shared on other websites without getting consent from its author. Content is provided to you AS IS for your information and personal use only. Download presentation by click this link. While downloading, if for some reason you are not able to download a presentation, the publisher may have deleted the file from their server. During download, if you can't get a presentation, the file might be deleted by the publisher.

E N D

Presentation Transcript


  1. Lecture 5I Function Approximation • Data driven function approximation • Projective hyper-tangent function 數值方法

  2. Interpolation vs approximation • Polynomial interpolation • Constraints: f(xi)=yi for all I • Polynomial approximation • Minimization of mean square error • Non-polynomial approximation • Minimization of mean square error 數值方法

  3. Data Driven Function Approximation • Input • Paired data • Output • An approximating function • Requirement • Minimization of mean square error 數值方法

  4. Approximating function f: a mapping realized by weight sum of hyper-tangent functions 數值方法

  5. Why weight sum of hyper-tangent functions ? With only linear combination, the approximating function is linear 數值方法

  6. Install NNSYSID • Install • Download • Set path to recruit the directory where NNSYSID.zip is extracted The NNSYSID Toolbox learn_MLP By Levenberg Marquardt method 數值方法

  7. Example fa1d.m Black box tanh(x+2)+sech(x) y observation x Create paired data DDFA One tanh 數值方法

  8. Single tanh r h=ax+b tanh(h) x Approximate by single tanh tanh(x+2)+sech(x) 數值方法

  9. Example fa1d.m Black box tanh(x+2)+sech(x) y observation x Create paired data DDFA two tanh functions 數值方法

  10. Two weighted tanh functions b1 tanh r1 1 b2 a1 r2 x tanh a2 數值方法

  11. Approximate by two tanh functions tanh(x+2)+sech(x) 數值方法

  12. Multi-Layer Perceptrons (tanhs) b1 tanh r1 1 b2 a1 r2 x tanh a2 INPUT LAYER OUTPUT LAYER HIDDEN LAYER 數值方法

  13. Example fa1d.m Black box sin(x)+sech(x) y observation x Create paired data DDFA two tanh functions 數值方法

  14. Approximate by five tanh functions sin(x)+sech(x) 數值方法

  15. MLP Network b1 tanh r1 b2 1 a1 tanh r2 a2 x bM ……. rM aM tanh rM+1 1 數值方法

  16. Data structure • a=[a1 a2 a3 … aM] • b=[b1 b2 b3 … bM] • r=[r1 r2 r3 … rM rM+1] 數值方法

  17. MLP evaluation Given x,a,b and r, find 數值方法

  18. Procedure: MLP evaluation • Input r,a,b and x,M • y=r(M+1) • Set M to the length of a • For m=1:M • Add r(i)*tanh(x*a(i)+b(i)) to y • Return y 數值方法

  19. y=eval_MLP(x,r,a,b,M); M=length(a) y=r(M+1) for m=1:M exit • Add r(i)*tanh(x*a(i)+b(i)) to y 數值方法

  20. Function approximation Given Find a parametric function that minimize 數值方法

  21. Problem statement Given Minimize 數值方法

More Related