1 / 44

Lecture 5 Polynomial Approximation

Lecture 5 Polynomial Approximation. Polynomial Interpolation Example Limitation Polynomial Approximation (fitting) Line fitting Quadratic curve fitting Polynomial fitting. Polynomials. Polynomial determined by zeros in [-4,0,3]. P=poly([-4 0 3]);. Plot polynomial P. x=linspace(-5,5);

ona
Download Presentation

Lecture 5 Polynomial Approximation

An Image/Link below is provided (as is) to download presentation Download Policy: Content on the Website is provided to you AS IS for your information and personal use and may not be sold / licensed / shared on other websites without getting consent from its author. Content is provided to you AS IS for your information and personal use only. Download presentation by click this link. While downloading, if for some reason you are not able to download a presentation, the publisher may have deleted the file from their server. During download, if you can't get a presentation, the file might be deleted by the publisher.

E N D

Presentation Transcript


  1. Lecture 5 Polynomial Approximation • Polynomial Interpolation • Example • Limitation • Polynomial Approximation (fitting) • Line fitting • Quadratic curve fitting • Polynomial fitting 數值方法

  2. Polynomials Polynomial determined by zeros in [-4,0,3] P=poly([-4 0 3]); Plot polynomial P x=linspace(-5,5); y=polyval(P,x); plot(x,y); 數值方法

  3. Sampling of paired data Produce a polynomial with zeros [-4,0,3] P=poly([-4 0 3]); Plot paired data x=rand(1,6)*10-5; y=polyval(P,x); plot(x,y, 'ro'); 數值方法

  4. Polynomial interpolation Produce a polynomial with zeros [-4,0,3] P=poly([-4 0 3]); n=6 x=rand(1,n)*10-5; y=polyval(P,x); plot(x,y, 'ro'); Plot the interpolating polynomial v=linspace(min(x),max(x)); z=int_poly(v,x,y); plot(v,z,'k'); 數值方法

  5. Demo_ip Source codes 數值方法

  6. m=3, n=5 >> demo_ip data size n=5 數值方法

  7. m=3, n=6 >> demo_ip data size n=6 數值方法

  8. m=3, n=10 >> demo_ip data size n=10 數值方法

  9. m=3, n=12 >> demo_ip data size n=12 數值方法

  10. Sample with noise Produce a polynomial with zeros [-4,0,3] P=poly([-4 0 3]);n=6; x=rand(1,n)*10-5; y=polyval(P,x); nois=rand(1,n)*0.5-0.25; plot(x,y+nois, 'ro'); Plot the interpolating polynomial v=linspace(min(x),max(x)); z=int_poly(v,x,y+nois); plot(v,z,'k'); 數值方法

  11. Demo_ip_noisy source codes 數值方法

  12. Noise data • Noise ratio • Mean of abs(noise)/abs(signal) noise_ratio = 0.0074 數值方法

  13. Numerical results Small noise causes intolerant interpolation >> demo_ip_noisy data size n:12 noise_ratio = 0.0053 數值方法

  14. Numerical results Small noise causes intolerant interpolation >> demo_ip_noisy data size n:13 noise_ratio = 0.0031 數值方法

  15. Interpolation Vs approximation • An interpolating polynomial is expected to satisfy all constraints posed by paired data • An interpolating polynomial is unable to retrieve an original target function when noisy paired data are provided • For noisy paired data, the goal of polynomial fitting is revised to minimize the mean square approximating error 數值方法

  16. Polynomial approximation Given paired data, (xi,yi), i=1,…,n, the approximating polynomial is required to minimize the mean square error of approximating yi by f(xi) 數值方法

  17. Polynomial fitting fa1d_polyfit.m 數值方法

  18. Line fitting Minimizaing the mean square approximating error Target: 數值方法

  19. Line fitting >> fa1d_polyfit input a function: x.^2+cos(x) :x+5 keyin sample size:300 polynomial degree:1 E = 8.3252e-004 Red: Approximating polynomial a=1;b=5 數值方法

  20. Line fitting >> fa1d_polyfit input a function: x.^2+cos(x) :3*x+1/2 keyin sample size:30 polynomial degree:1 E = 0.0010 Red: Approximating polynomial a=3;b=1/2 數值方法

  21. Objective function I • Line fitting Target: 數值方法

  22. E1 is a quadratic function of a and b Setting derivatives of E1 to zero leads to a linear system 數值方法

  23. a linear system 數值方法

  24. 數值方法

  25. 數值方法

  26. 數值方法

  27. Objective function II • Quadratic polynomial fitting Target: 數值方法

  28. E2 are quadratic Setting derivatives of E2 to zero leads to a linear system 數值方法

  29. a linear system 數值方法

  30. 數值方法

  31. 數值方法

  32. 數值方法

  33. Quadratic polynomial fitting • Minimization of an approximating error Target: 數值方法

  34. Quadratic poly fitting input a function: x.^2+cos(x) :3*x.^2-2*x+1 keyin sample size:20 polynomial degree:2 E = 6.7774e-004 a=3 b=-2 c=1 數值方法

  35. Data driven polynomial approximation • Minimization of Mean square error (mse) • Data driven polynomial approximation • f : a polynomial pm • Polynomial degree m is less than data size n 數值方法

  36. Special case: polynomial interpolation 數值方法

  37. POLYFIT: Fit polynomial to data • polyfit(x,y,m) • x : input vectors or predictors • y : desired outputs • m : degree of interpolating polynomial • Use m to prevent from over-fitting • Tolerance to noise 數值方法

  38. POLYFIT: Fit polynomial to data A polynomial determined by zeros in [-4,0,3] P=poly([-4 0 3]); n=20;m=3; x=rand(1,20)*10-5; y=polyval(P,x); nois=rand(1,20)*0.5-0.25; plot(x,y+nois, 'ro'); Plot the interpolating polynomial v=linspace(min(x),max(x)); p=polyfit(x,y+nois,m);hold on; plot(v,polyval(p,v),'k'); 數值方法

  39. Non-polynomial • sin fx=inline('sin(x)'); n=20;m=3 x=rand(1,n)*10-5; y=fx(x); nois=rand(1,n)*0.5-0.25; plot(x,y+nois, 'ro');hold on 數值方法

  40. Under-fitting m=3 v=linspace(min(x),max(x)); p=polyfit(x,y+nois,m);hold on; plot(v,polyval(p,v),'k'); Under-fitting due to approximating non-polynomial by low-degree polynomials 數值方法

  41. Intolerant mse >> mean((polyval(p,x)-(y+nois)).^2) ans = 0.0898 Under-fitting causes intolerant mean square error 數值方法

  42. Under-fitting m=4; v=linspace(min(x),max(x)); p=polyfit(x,y+nois,m);hold on; plot(v,polyval(p,v), 'b'); M=4 數值方法

  43. Fitting non-polynomial >> fa1d_polyfit input a function: x.^2+cos(x) :sin(x) keyin sample size:50 polynomial degree:5 E = 0.0365 數值方法

  44. Fitting non-polynomial >> fa1d_polyfit input a function: x.^2+cos(x) :tanh(x+2)+sech(x) keyin sample size:30 polynomial degree:5 E = 0.0097 數值方法

More Related