670 likes | 1.04k Views
DQ UFSCar. LABBES. LABORATÓRIO DE ANALÍTICA BIOANALÍTICA BIOSSENSORES ELETROANALÍTICA & SENSORES. Alternative electrodes in electroanalysis. Orlando Fatibello-Filho LABBES / Departamento de Química Universidade Federal de São Carlos (UFSCar) bello@ufscar.br; www.ufscar.br/labbes.
E N D
DQ UFSCar LABBES • LABORATÓRIO DE ANALÍTICA • BIOANALÍTICA • BIOSSENSORES • ELETROANALÍTICA & • SENSORES Alternative electrodes in electroanalysis Orlando Fatibello-Filho LABBES / Departamento de Química Universidade Federal de São Carlos (UFSCar) bello@ufscar.br; www.ufscar.br/labbes
PVC electrodes Metal-metal Oxide electrodes POTENTIOMETRICS Biosensors Composites electrodes Amalgam electrodes Bismuth film electrodes Carbon nanotubes, carbon paste and carbon composite electrodes Boron-doped diamond (BDD) electrode Amorphous carbon nitride (a-CNx) electrode Biosensors LABBES AMPEROMETRICS /VOLTAMMETRICS PIEZOELECTRICS
Introduction: Electroanalytical Methods Advantages Determination of analyte in colored solutions and/or with material in suspension In situ determination of analyte: portability of the instrument Simultaneous determination of inorganic and/or organic analytes Speciation of analyte Disadvantages Adsorption of substances in the electrode surface Low stability of work electrode low reproducibility
Heyrovský`s article (1922) Electrolysis with a Dropping Mercury Cathode J. Heyrovský, Chimické Listy, 16, 256 (1922)
Polarography Fig. J. Heyrovsky, Masuzo Shikata and the apparatus for measuring current-voltage curves in electrolysis with dropping mercury electrode (DME) and a sensitive photographic paper) J. Heyrovský, M. Shikata, Rec. Trav. Chim. Pays-Bas, 44, 496 (1925)
(C) (A) (B) Fig. (A) Polarograph, (B) December 10th, 1959 received from the hands of King of Sweden Gustav Adolph VI Nobel Prize for his invention of polarography and (C) Nobel Prize Certificate
Characteristics of the dropping-mercury electrode (DME) Advantages High hydrogen overpotential Good stability Good reproducibility Characteristics of noble metals (Au, Pt) Disadvantages O2 should be removed from solutions Flow analysis Use is limited in positive potentials Toxicity
ISE 2010 Nice, France Clarkson University, Potsdam, NY
Amalgam Electrodes for Electroanalysis Fig. Dental and/or Amalgam Electrode E. Mikkelsen, K.N. Schroder, Electroanalysis, 15(8), 679 (2003) B. Yosypchuc, J. Barek, Crit. Rev. Anal. Chem., 39, 189 (2009) D. de Souza, L. H. Mascaro, O. Fatibello-Filho, J. State. Electrochem., 15, 2023 (2011) D. de Souza, L.C. Melo, A.N. Correa, P. Lima-Neto, O. Fatibello-Filho, L. H. Mascaro, Quim. Nova, 34(3), 487 (2011) C. M. A. Brett, F. Trandafir, J. Electroanal. Chem., 572(2), 347 (2004).
Approximate potential ranges for platinum, mercury, carbon, boron-doped diamond (BDD), amorphous carbon nitride (a-CNx) and bismuth electrodes 0 -3.0 3.0 vs SCE 1M H2SO4 Pt 1M NaOH 1M H2SO4 1M KCl Hg 1M NaOH 1M HClO4 C 0.1 M KCl 0.5 M H2SO4 BDD 0.5 M H2SO4 a-CNx 1M HClO4 Bi 0.5 M NaOH
Bismuth film electrodes • Good negative potential window • Interference of dissolved oxygen is minimal • Low toxicity • Electrochemical behavior is similar to that of mercury L.C.S. Figueiredo-Filho, D.C. Azzi, B.C. Janegitz, O. Fatibello-Filho, Electroanalysis, 24(2), 303 (2012) L.C.S. Figueiredo-Filho, B.C. Janegitz, R.C. Faria, O. Fatibello-Filho, L. H. Marcolino-Jr, F.R. Caetano, I.L de Mattos, Quim. Nova, 35(5), 1016 (2012) L.C.S. Figueiredo-Filho, V.B. dos Santos, T.B. Guerreiro, O. Fatibello-Filho, R.C. Faria, L.H. Marcolino-Jr, Electroanalysis, 22(11), 1260 (2010) A. Caldeira, C. Gouveia-Caridade, R. Pauliukaite, Brett, C. M. A., Electroanalysis, 23(6), 1301 (2011)
Bismuth film electrode for in situ determinations B A C (A): PalmSens and (B): DropSens potentiostats and (C) BiSPE preparation
L. C. S. Figueiredo-Filho et al., Analytical Methods, 5, 202 (2013)
Bismuth film electrode for in situ determinations TT-type connector for printers Fig. A) electrochemical cell built with inexpensive materials and B) set for analysis: connector, minisensor and electrochemical cell (ink color container) for in situ determinations L.C.S. Figueiredo-Filho, B.C. Janegitz, R.C. Faria, O. Fatibello-Filho, L. H. Marcolino-Jr, F.R. Caetano, I.L. de Mattos, Quim. Nova, 35(5), 1016 (2012)
Bismuth film electrode for in situ determinations A B C Fig. FEG-SEM (Field emission gun scanning electron microscope) micrographs of the bismuth film electrodeposited onto a copper electrode: A) copper substrate, B) BiFE 15000 X and C) XRD (X-ray Diffraction): Bi black and Cu (gray) • Bismuth film • -0.18 V vs. Ag/AgCl (3.0 mol L-1 KCl) during 200 s • 0.02 mol L-1 Bi(NO3)3, 1.0 mol L-1 HCl in 0.15 mol L-1 sodium citrate
Bismuth film electrode (BiFE) for paraquat determination - e N N C H N N C H H C H C 3 3 3 3 2 + + ( P Q ) ( P Q ) E = - 0 . 6 7 V v s . ( A g / A g C l ) P Q 1 1 - e N N C H H C H C N N C H 3 3 3 3 + ( P Q ) ( P Q º ) E = - 0 . 9 8 V v s . ( A g / A g C l ) P Q 2 2 Fig. DP voltammograms of paraquat (1,1'-dimethyl-4,4'-bipyridinium dichloride) in 0.1 mol L-1 acetate buffer solution (pH 4.5) L.C.S. Figueiredo-Filho, V.B. dos Santos, B.C. Janegitz, T.B. Guerreiro, O. Fatibello-Filho, R.C. Faria, L.H. Marcolino-Jr, Electroanalysis, 22(11), 1260 (2010)
Bismuth film electrode (BiFE) for atrazine determination Fig. Proposed mechanism for reduction of 2-chloro-4-(ethylamine)-6-(isopropylamine)-s-triazine (ATZ) L.C.S. Figueiredo, D.C. Azzi, B.C. Janegitz, O. Fatibello-Filho, Electroanalysis, 24, 303 (2012)
Pb2+: 1.3 – 13.0 µmol L-1 , LD: 0.83 µmol L-1 Cd2+: 0.99 – 12 µmol L-1 , LD: 0.53 µmol L-1
Potentiostat • Determinação in situ e on-line analitos orgânicos e cátions metálicos • Instrumentação portátil (bateria), robusta, exata e precisa • Controle térmico • Análises rápidas • GPS • Rede Wi-Fi • Uso de ferramentas de tecnologia da informação (TI): Comunicação Wi-Fi, Bluetooth, GPS, GSM, telefonia 3G (SMS).
Carbon, carbon paste and carbon composite electrodes (g) Fig. Structures of (a) glassy carbon, (b) graphite, (c) carbon nanotubes, (d) graphite powder, (e) carbon fibres, (f) boron-doped diamond, (g) fullerene (h) graphene and (i) pyrolitic graphite (not shown) E.T.G. Cavalheiro, C.M;.A. Brett,, A. M. Oliveira-Brett, O. Fatibello-Filho, Bioanal. Rev, 4, 31 (2012); Pauliukaite, R., Ghica, M.E., Brett, C.M.A., Fatibello-Filho, O., Anal. Chem., 81, 5164 (2009); Ghica, M.E., Pauliukaite, R., Brett, C.M.A., Fatibello-Filho, O., Sensors and Actuactors, 142, 308 (2009)
Single-walled carbon nanotubes (SWCNTs) and multi-walled carbon nanotubes (MWCNTs) A: 1-2 nm diameter B: 2 to 100 nm separated by a distance of 0.3-0.4 nm Schematics of an individual (A) SWCNT and (B) MWCNT Iijima, S., Nature, 354, 56 (1991); Merkoçi, A. et al.Trend Anal. Chem., 24, 826 (2005)
Carbon nanotubes • Good electrical conductivity and mechanical strength • Relatively chemically inert in most electrolyte solutions • High surface activity • Wide operational potential window • Insolubility of CNTs in all solvents Wildgoose, G. G. et. al.Microchim. Acta, 152, 187 (2006); Banks, C. E. et al.Chem. Commun., 829-841 (2005); Merkoçi, A. et al.Trend Anal. Chem., 24, 826 (2005).
Treatment of carbon nanotubes Treatment of the carbon nanotubes increases the sensitivity of the electrodes, because there is the appearance of reactive groups such as -COO-,-OH, C=O and others The literature reports several treatments, which use mainly concentrated 2 mol/L HCl, H2O and conc. H2SO4/ HNO3 3:1 v/v B.C. Janegitz, L.H. Marcolino-Junior, S.P. Campana-Filho, R.C. Faria, O. Fatibello-Filho, Sens. Actuators B-Chem., 142, 260 (2009) H.H. Takeda, B.C. Janegitz, R.A. Medeiros, L.H.C. Mattoso, O. Fatibello-Filho, Sens. Actuators B-Chem., 161, 755 (2012)
Simultaneous Voltammetric Determination of Ascorbic Acid and Sulfite in Beverages Employing a Glassy Carbon Electrode Modified with Carbon Nanotubes within a Poly(Allylamine Hydrochloride) (PAH) Film (PAH) Fig. Cyclic voltammograms (50 mV s−1), after background subtraction, of a (a) GCE and (b) MWCNTs-PAH/GCE for 250 µM AA and a 450 µM sulfite in 0.1 M acetate buffer solution (pH 4.6). E.R. Sartori, O. Fatibello-Filho, Electroanalysis, 24(3), 627 (2012).
Chitosan (linear -1,4-linked polysaccharide) Chemical equilibrium of chitosan in solution Pauliukaite, R. ; Ghica, M. E. ; Fatibello-Filho, O. ; Brett C.M.A., Anal. Chem., 81, 5364-5372 (2009) Pauliukaite, R. ; Ghica, M. E. ; Fatibello-Filho, O. ; Brett C.M.A. ElectrochimicaActa, 55, 6239 (2010)
EDC-NHS 1-ethyl-3-(3-dimethylaminopropyl) carbodiimide (EDC) N-hydroxysuccinimide (NHS)
Possible mechanism of covalent binding of CNTs using Chit crosslinking and EDC/NHS (1-ethyl-3-(3-dimethylaminopropyl) carbodiimide/N-hydroxysuccinimide) Pauliukaite, R., Ghica, M.E., Brett, C.M.A., Fatibello-Filho, O., Anal. Chem., 81, 5164 (2009) Ghica, M.E., Pauliukaite, R., Brett, C.M.A., Fatibello-Filho, O., Sensors and Actuactors, 142, 308 (2009)
A B Scheme of possible ways of enzyme immobilization at the electrode modified with chitosan and MWCNTs: (A) enzyme attachment directly to CNTs by EDC-NHS and (B) enzyme linked to both chitosan and to CNTs by EDC-NHS and GA.
Carbon paste electrodes C. Vieira, O. Fatibello-Filho, Talanta, 52(4), 681 (2000) M. F. S. Teixeira, A. Z. Pinto, O. Fatibello-Filho, Talanta, 45(2), 249 (1997) B. C. Janegitz, L. C. S. Figueiredo-Filho, L. H. Marcolino-Jr, O. Fatibello-Filho, J. Electroanal. Chemistry, 660(1), 209 (2011) F. C. Vicentini, L.C.S. Figueiredo-Filho, B. C. Janegitz, A. Santiago, E.R. Pereira, O. Fatibello-Filho, Quim. Nova, 34(5), 825 (2011)
Composite Electrodes T. Navratil, J. Barek, Crit. Rev. Anal. Chem., 39, 131 (2009)
Composite electrode Fig. Composite Electrode C. M. F. Calixto, P. Cervini, E. T. G. Cavalheiro, Quim. Nova, 31(8), 2194 (2008) I. Cesarino, C. Gouveia-Caridade, R. Pauliukeite, E. T. G. Cavalheiro, Brett, C. M. A., Electroanalysis, 22(12), 1437 (2010) I. Cesarino, E. T. G. Cavalheiro, Brett, C. M. A., Microchimica Acta, 171 (1-2), 1 2010)
Boron-doped diamond electrode corrosion stable in very aggressive media very low and stable background current very low adsorption of organic/inorganic species extreme electrochemical stability in both alkaline and acid media high response sensitivity very wide working potential window (3.5 V) K. Pecková et al. Critical Reviews in Analytical Chemistry. 39 (2009) 148 L.S. Andrade, G. R. Salazar-Banda, R. C. Rocha-Filho, O. Fatibello-Filho, Cathodic Pretreatment of Boron-Doped Diamond Electrodes and Their Use in Electroanalysis, In: Synthetic Diamond Films: Preparation, Electrochemistry, Characterization, and Applications, (Eds. E. Brillas and C. A. Martínez-Huitle), John Wiley & Sons, Inc., Hoboken, NJ, USA, 2011.
Experimental Working electrode: Boron-doped diamond film (8000 ppm) on a silicon wafer from Centre Suisse de Electronique et de Microtechnique SA (CSEM), Neuchatêl, Switzerland Cathodic pretreatment: –1.0 A cm–2 for 180 s in a 0.5 M H2SO4 solution Anodic pretreatment: +1.0 A cm-2 for 180 s in a 0.5 M H2SO4 solution Counter electrode: Pt wire Reference electrode: Ag/AgCl (3.0 M KCl) Potentiostat/galvanostat: Autolab PGSTAT-30 (Ecochemie) controlled with the GPES 4.0 software Electrochemical pre-treatments
Electrochemical pre-treatments • Characteristics of the procedure: • simple and rapid • low cost • good intra- and inter-day repeatabilities Anodic pre-treatment Cathodic pre-treatment Oxygen-terminated BDD (OT-BDD) Hydrogen-terminated BDD (HT-BDD) G.R. Salazar-Banda, L.S. Andrade, P.A.P. Nascente, P.S. Pizani, R.C. Rocha-Filho, L.A. Avaca. Electrochimica Acta, 51, 4612 (2006)
Square-wave voltammetric determination of acetylsalicylic acid in pharmaceutical formulations using a BDD electrode without the need of previous alkaline hydrolysis step Highlight: first voltammetric method in the literature! LOD = 2.0 M HTB: 2-(hydroxyl)-4-(trifluoromethyl)-benzoic acid E.R. Sartori, R.A. Medeiros, R.C. Rocha-Filho, O. Fatibello-Filho. J. Braz. Chem. Soc., 20 360 (2009); T.A. Enache, O. Fatibello-Filho, A. M. Oliveira-Brett. Combinatorial Chemistry & High Throughput Screening, 13, 569 (2010)
Paracetamol (A) and caffeine (B) in pharmaceuticals Differential pulse voltammetry Paracetamol: 0.50 – 83 M LOD = 0.049 M Caffeine: 0.50 – 83 M LOD = 0.035 M Highlight:LODs lower than those reported; higher sensitivity and larger linear concentration range of the analytical curve 17 M 38 M B.C. Lourenção, R.A. Medeiros, R.C. Rocha-Filho, L.H. Mazo, O. Fatibello-Filho, Talanta, 78, 748 (2009)
Repeatability study GC BDD Repeatability study for 0.029 M Ascorbic acid + 0.79 M caffeine in 0.1 M H2SO4 (n = 10) RSD = 8.7 % for glassy-carbon (GC) electrode RSD = 1.0 % for boron-doped diamond (BDD) electrode Highlight: higher repeatability of the BDD electrode B.C. Lourenção; R.A. Medeiros; R.C. Rocha-Filho; O. Fatibello-Filho; Electroanalysis, 22, 1717 (2010)
Simultaneous voltammetric determination of synthetic colorants in food using a cathodically pretreated BDD electrode TT/SY SY TT/SY TT BB/SY BB BB/SY Fig. Chemical structures of the Tartrazine (TT), Sunset yellow (SY) and Brilliant blue (BB) and DP voltammograms LOD = 62.7, 13.1 and 143 nmol L-1 for TT, SY and BB, respectively. R. A. Medeiros, B.C. Lourenção, R. C. Rocha-Filho, O. Fatibello-Filho, Talanta, 97, 291 (2012); R. A. Medeiros, B.C. Lourenção, R. C. Rocha-Filho, O. Fatibello-Filho, Talanta, 99, 883 (2012)
Simultaneous Square-Wave Voltammetric Determination of Phenolic Antioxidants (BHA and BHT) in Food Using a Boron-Doped Diamond Electrode BHA = butylated hydroxyanisole; BHT = butylated hydroxytoluene R.A. Medeiros, R.C. Rocha-Filho, O. Fatibello-Filho, Food Chemistry, 123 , 886 (2010)
BHA BHT Highlight: LODs lower than those previously reported BHA: 0.60 – 10 M; LOD = 0.14 M BHT: 0.60 – 10 M; LOD = 0.25 M
Potentiostat/galvanostat: Autolab PGSTAT-30 (Ecochemie) Flow Injection analysis system