1 / 81

Developing an Ensemble Prediction System based on COSMO-DE

Project COSMO-DE-EPS. Deutscher Wetterdienst. Developing an Ensemble Prediction System based on COSMO-DE. Susanne Theis, Christoph Gebhardt, Michael Buchhold, Marcus Paulat, Roland Ohl, Zied Ben Bouall è gue, Carlos Peralta. Deutscher Wetterdienst. Overview

Download Presentation

Developing an Ensemble Prediction System based on COSMO-DE

An Image/Link below is provided (as is) to download presentation Download Policy: Content on the Website is provided to you AS IS for your information and personal use and may not be sold / licensed / shared on other websites without getting consent from its author. Content is provided to you AS IS for your information and personal use only. Download presentation by click this link. While downloading, if for some reason you are not able to download a presentation, the publisher may have deleted the file from their server. During download, if you can't get a presentation, the file might be deleted by the publisher.

E N D

Presentation Transcript


  1. Project COSMO-DE-EPS Deutscher Wetterdienst Developing an Ensemble Prediction Systembased on COSMO-DE Susanne Theis, Christoph Gebhardt, Michael Buchhold, Marcus Paulat, Roland Ohl, Zied Ben Bouallègue, Carlos Peralta

  2. Deutscher Wetterdienst • Overview • Motivation for Project COSMO-DE-EPS • Tasks within Project • Current Status • where to get information

  3. Deutscher Wetterdienst Motivation for the Project

  4. Deutscher Wetterdienst • Numerical Weather Prediction Model COSMO-DE • grid box size: 2,8 km • without parametrization of deep convection • assimilation of radar data • lead time: 0-21 hours • operational since April 2007 COSMO-DE COSMO-EU GME

  5. Deutscher Wetterdienst Benefits of COSMO-DE COSMO-EU (7 km) COSMO-DE (2,8 km) captures extremes mm/h

  6. Deutscher Wetterdienst Benefits of COSMO-DE COSMO-EU (7 km) COSMO-DE (2,8 km) looks more realistic mm/h

  7. Deutscher Wetterdienst What about Deterministic Predictability? Atmosphere is a chaotic system (Lorenz,1963) lead time

  8. Deutscher Wetterdienst Scale Diagram Predictability Zyklonen 1 Woche typical time scale Cumulo-nimbus 1 Stunde 100 m 10 km 1000 km typical spacial scale lead time

  9. Deutscher Wetterdienst COSMO-DE (2,8 km) mm/h

  10. Deutscher Wetterdienst COSMO-DE (2,8 km) • Need for probabilistic approach •  so that user really gets benefit mm/h  paradigm shift from deterministic to probabilistic prediction

  11. Deutscher Wetterdienst Project COSMO-DE-EPS:Development of a convection-allowing Ensemble Prediction SystemAims and Tasks

  12. Deutscher Wetterdienst Setting up an Ensemble System several predictions = „members“ of ensemble  very large investment of computing power „variations“ in prediction system • ensemble products: • probability density fct • - exceedance probs • quantiles • - „spread“ • mean • ...

  13. Deutscher Wetterdienst • How many ensemble members? • 20 members, pre-operational • 40 members, operational • When? • 2010 pre-operational • 2011 operational

  14. Deutscher Wetterdienst • Tasks within Project • implementation of perturbations • post-processing • verification & diagnostics • visualization • early user feedback

  15. Deutscher Wetterdienst • Tasks within Project • implementation of perturbations • post-processing • verification & diagnostics • visualization • early user feedback

  16. Deutscher Wetterdienst Implementation of Perturbations

  17. Deutscher Wetterdienst Implementation of Perturbations X X initial conditions boundary conditions model physics

  18. Deutscher Wetterdienst Perturbation of the Model

  19. Deutscher Wetterdienst Perturbation of the Model Alter parameters in physics parametrizations entr_sc=0.0003  entrain_sc=0.002 rlam_heat=1.  rlam_heat=10. rlam_heat=1.  rlam_heat=0.1 …q_crit… …tur_len… 1 2 3 4 5 5 4 3 2 1 requires careful tuning  affect forecast, but not long-term quality

  20. Deutscher Wetterdienst Perturbation of Boundary Conditions

  21. Deutscher Wetterdienst Perturbation of Boundary Conditions Reminder: operational chain COSMO-DE COSMO-EU GME

  22. Deutscher Wetterdienst Perturbation of Boundary Conditions Part of AEMet Ensemble (AEMet, Spain) Part of COSMO-SREPS (ARPA-SIMC, Bologna) COSMO-DE-EPS (DWD, Germany) (Garcia-Moya et al., 2007) (Marsigli et al., 2008) (Gebhardt et al. 2009)

  23. Deutscher Wetterdienst Perturbation of Boundary Conditions Part of AEMet Ensemble (AEMet, Spain) Part of COSMO-SREPS (ARPA-SIMC, Bologna) COSMO-DE-EPS (DWD, Germany) GME IFS UM NCEP COSMO-DE (2,8km) COSMO COSMO COSMO COSMO

  24. Deutscher Wetterdienst Perturbation of Boundary Conditions Part of AEMet Ensemble (AEMet, Spain) Part of COSMO-SREPS (ARPA-SIMC, Bologna) COSMO-DE-EPS (DWD, Germany) GME IFS UM NCEP COSMO-DE (2,8km) COSMO COSMO COSMO COSMO long-term Plan: take boundaries from ICON Ensemble

  25. Deutscher Wetterdienst • Perturbation of Initial Conditions • first experiments: perturb “nudging” at forecast start • current work: use differences between control and COSMO-SREPS • plans: Ensemble Transform Kalman Filter (COSMO project KENDA)

  26. Deutscher Wetterdienst Current Status of Perturbation X X initial conditions boundary conditions model physics

  27. Deutscher Wetterdienst Back to the List of Tasks

  28. Deutscher Wetterdienst • Tasks within Project • implementation of perturbations • post-processing • verification & diagnostics • visualization • early user feedback

  29. Deutscher Wetterdienst • More Information • poster at this COSMO General Meeting • past meetings: download presentations • http://www.metoffice.gov.uk/conference/srnwp_workshop/presentations/session_3/18_Theis_EPS09.pdf • http://www.pks.mpg.de/~dswc09/  contribution files • future meetings: ECAM/EMS, SRNWP/EWGLAM, COSMO User Seminar • publications: • Gebhardt et al (2008): Experimental ensemble forecasts of precipitation based on a convection-resolving model. Atmospheric Science Letters 9, 67-72. • Gebhardt et al (2009): Uncertainties in COSMO-DE precipitation forecasts introduced by model perturbations and variation of lateral boundaries. Submitted to Atmospheric Research. • contact: • susanne.theis@dwd.de, christoph.gebhardt@dwd.de

  30. Deutscher Wetterdienst Extra Slides

  31. Deutscher Wetterdienst Current Experiments

  32. Deutscher Wetterdienst Current Status X X initial conditions boundary conditions model physics

  33. Deutscher Wetterdienst 1 2 3 4 5 IFS GME NCEP UM Current Experiments no perturbation of initial conditions

  34. Deutscher Wetterdienst Current Experiments 1 2 3 4 5 IFS GME NCEP UM no perturbation of initial conditions

  35. Deutscher Wetterdienst 2 July 2007, 00 UTC + 24h 24h accumulations of precipitation [mm] mm/24h

  36. Deutscher Wetterdienst Current Experiments 1 2 3 4 5 IFS GME NCEP UM no perturbation of initial conditions

  37. Deutscher Wetterdienst 2 July 2007, 00 UTC + 24h 24h accumulations of precipitation [mm] mm/24h

  38. Deutscher Wetterdienst Ensemble Diagnostics - how do perturbations affect the forecast?

  39. Deutscher Wetterdienst • Effect of perturbations on precipitation • boundaries: • dominate after a few hours • (not necessarily, also case-dependent) • physics: • dominate during first few hours (Gebhardt et al., 2009)

  40. Deutscher Wetterdienst Ensemble Dispersion (precipitation) Normalized Variance Difference = variance (BC only) - variance (PHY only) normalized by sum of variances (Gebhardt et al., 2009)

  41. Deutscher Wetterdienst Ensemble Dispersion (precipitation) Normalized Variance Difference = variance (BC only) - variance (PHY only) normalized by sum of variances for individual days (Gebhardt et al., 2009)

  42. Deutscher Wetterdienst Ensemble Verification - how good is the Ensemble (at this stage)?

  43. Deutscher Wetterdienst Verification Data Sets RADAR

  44. Deutscher Wetterdienst Verification Data Sets (Ensemble Forecasts) 1 2 3 4 5 IFS GME Period: 1 July – 16 Sep 2008 NCEP UM

  45. Deutscher Wetterdienst Verification Data Sets (Ensemble Forecasts) 1 2 3 4 5 IFS GME Period: 1 July – 16 Sep 2008 NCEP UM

  46. Deutscher Wetterdienst Verification Data Sets (Ensemble Forecasts) 1 2 3 4 5 IFS GME Period: 1 July – 16 Sep 2008 when all 15 members available (60% of days) NCEP UM

  47. Deutscher Wetterdienst • Probabilistic Verification Measures • Traditional: • Brier Score, Brier Skill Score • ROC curve • Reliability Diagram • Talagrand Diagram

  48. Deutscher Wetterdienst Talagrand Diagram 24h precipitation 1 3 5 7 9 11 13 15 Rank

  49. Deutscher Wetterdienst Talagrand Diagram 24h precipitation observation 1 3 5 7 9 11 13 15 Rank

  50. Deutscher Wetterdienst • underdispersive ! • add IC perturbations • and statistical PP ! • also look into more • spread measures Talagrand Diagram 24h precipitation 1 3 5 7 9 11 13 15 Rank

More Related