460 likes | 712 Views
High Precision Experiments with Cold and Ultra-Cold Neutrons. q Bounce : Spectroscopy of Gravity. |3 > 3.32 peV. a, A, B, C. |1 > 1.4 peV. Hartmut Abele Vienna, 1 December 2012. Show Case I: Test of Gravitation at Short Distances with Quantum I nterference.
E N D
High Precision Experiments with Cold and Ultra-Cold Neutrons qBounce: Spectroscopy of Gravity |3 > 3.32 peV a, A, B, C |1 > 1.4 peV Hartmut Abele Vienna, 1 December 2012
Show Case I: Test of Gravitation at Short Distances with Quantum Interference Julio Gea-Banacloche, Am. J. Phys.1999 Quantum interference: sensitivity to fifth forces Height, 40 µm Time Simulation: Reiter, Schlederer, Seppi Hartmut Abele, Atominstitut, TU Wien Rafael Reiter, Bernhard Schlederer, David Sepp
Nature Physics, 1 June 2011 Key Technique: Gravity ResonanceSpectroscopy |3 > 3.32 peV |1 > 1.4 peV • atomicclocks • nuclearmagneticresonancespectroscopy • spin echo technique • quantummetrology • gammaresonancespectroscopy • Test Newton‘slawatshortdistances: • String Theories • Dark Matter • Dark Energy Hartmut Abele, Atominstitut, TU Wien High Precision - Low Energy
Rabi-Gravity-Spectroscopy a 2-level systemcanbeconsideredas a Spin ½ - System |3 > 3.32 peV |1 > 1.4 peV • QS: V.N., H.A. et al., • Nature 2002 Vibratingmirror AlternatingMagneticgradientfields
Side-band excitation • Gähler, Felber, Golub et al.
The kickedrotor • M. Bienert, F. Haug and W. P. Schleich, Raizen
Outline • Gravity ResonanceSpectroscopy • Quantum states in thegravity potential oftheearthandcoherencesuperposition • Search fordeviationsfrom Newtons gravitylawatshortdistances • Large extra dimensions • Dark matter particles • Dark energy • Tests ofweakinteractionwithneutron beta-decayexperiments • Experiment PERC • Scientific Programme for ESS /Broadoverviewofthefield
Neutron sources • Spallation Source • Reactorsource
Neutron Production Fission: 2 MeV Thermal: 25meV, 300K Cold: 4 meV, 40K 10-7 ultra cold: 100 neV, 1mK Gravity Experiment: 1 pico-eV Velocity v [m/s]
Tool: Ultra-ColdNeutrons • Strong Interaction: V ~ 100 neV • KineticEnergy: < 100 neV • 3m/s < v < 20m/s • Magnetism, Zeeman splitting : 120 neV/T • Energy in theearth‘sgravitationalfield: • E = mgh 100neV/m
? Quantum Bounce Cold-Source at 40 K • System Neutron & Earth • Neutron bound in thegravity potential oftheearth • <r> = 6 µm • Groundstateenergyof1.4 peV • 1 dim. • SchrödingerEqu. • AiryFunctions • Hydrogen Atom • Electronbound in proton potential • Bohr radius <r> = 1 A • Groundstateenergyof13 eV • 3 dim. • SchrödingerEqu. • Legrendre Polynomials Hartmut Abele, Technische Universität München Hartmut Abele 13 13
Gravity and Quantum Mechanics Schrödingerequation: Solutions: Airy-functions: Ai & Bi boundaryconditions: with 2nd mirroratheight V [peV]
Show Case I: Rabi-type Spectroscopy of Gravity Resonance Spectroscopy Technique to explore gravity T. Jenke, SPP1491-Treffen 2012, Frauenchiemsee
State Selection by a rough neutron mirror • 4.5 days of beam time • 3600 events(background subtracted) rough mirror track detector UCN neutron mirror • fit: • free parameters: • result: T. Jenke, ÖPG 2012
Horizontal velocity • 6 m/s < vx < 7.2 m/s T. Jenke, Diplomathesis, 2008
Frequency Reference for Gravitation • Based on naturalconstants: • Massoftheneutronm • Planck constantħ • Accelerationofearthg • Based on 2 naturalconstants: • Massoftheneutronm • Planck constantħ Plus Accelerationofearthg |3 > 3.32 peV |1 > 1.4 peV
Discoveries: thedarkuniverse • Spectroscopyof Gravity • Itdoesnot useelectromagneticforces • Itdoesnot usecouplingtoem Potential • Hyotheticalgravity-likeforces • Axions? • Chameleons? • constraint on any possible new interaction Axion 10-14 eV Scale
Neutrons test Newton • Strengtha • Range l • Hypothetical Gravity LikeForces • Extra Dimensions: • The string and Dp-brane theories predict the existence of extra space-time dimensions • Infinite-Volume Extra Dimensions: Randall and Sundrum • Exchange Forces from new Bosons: a deviation from the ISL can be induced by the exchange of new (pseudo)scalar and (pseudo)vector bosons • Axion - - - - - - - - - - - - - - - - - - - → 0.2 µm < < 0.2 cm • Scalar boson. Cosmological consideration • Bosons from Hidden SupersymmetricSectors • Gauge fields in thebulk (ADD, PRD 1999) - - - - →106 < < 109 • Supersymmetric large Extra Dimensions (B.& C.) - - - - → < 106 • Chameleonfields-
Show Case: Rabi-type Spectroscopy of Gravity Resonance Spectroscopy Technique to explore gravity Rabi-type experiment: Rabi-type experiment with damping • realization of gravity resonance • method possible • simple setup, no steps • high(er) transmission • upper mirror introduces • 2nd boundarycondition T. Jenke, SPP1491-Treffen 2012, Frauenchiemsee
Gravity Resonance Spectroscopy 2012 50 days of beam time, 116 measurements [data 2010] • stat. Significance: • stat. accuracy: • contrast: T. Jenke, Dissertation (TU Wien, 2011) T. Jenke et.al., arXiv:1208.3875 (2012) 10-14 eV Scale T. Jenke, ÖPG 2012
Applications I: Spin-dependant short-ranged interactions J.E. Moody, F. Wilczek, Phys. Rev. D30, 131-138 (1984) discovery potential [Setup 2010]: 3 days of beamtime T. Jenke et.al., arXiv:1208.3875 (2012) T. Jenke, ÖPG 2012
Dark Energy – Scalar Fields • Chameleonfields, Brax et al. PRD 70, 123518 (2004) • 2 Parameters , n
qBounceandChameleons • Mirrorsat z ~ ± d/2 • Fit tonumericalsolution
qBounceandChameleons • Bounds on coupling • Bycomparingtransitionfrequencywiththeoreticalexpectation: • as long as > 105 • Cite as: arXiv:1207.0419v1
Applications II: Strongly coupled chameleons A.N. Ivanov et.al., arXiv:1207.0419 (2012) T. Jenke et.al., arXiv:1208.3875 (2012) T. Jenke, ÖPG 2012
Feedback from FUNDAMENTAL PHYSICS • Convener: T. Soldner, O. Zimmer, H. Abele
Dark Energy – Scalar Fields • Chameleonfields, Brax et al. PRD 70, 123518 (2004) • 2 Parameters , n
Casimir Force Atom Neutron: Casimir force absent Polarizabilityextremelysmall: • ExampleRb r = 1 Micron
Grand Challenges • Sensitive toanyforce • Dark energysearch • chameleonfields • Dark matter search • Large extra dimensions • Hypotheticalgravitylikeforces
DFG/FWF Priority Programme 1491 • ParticipatingInstitutions: • IST Braunschweig • Univ. Heidelberg • ILL • Univ. Jena • Univ. Mainz • Priority Areas • CP-symmetry violation and particle physics in the early universe. • The structure and nature of weak interaction and possible extensions of the Standard Model. • Tests of gravitation with quantum objects • Charge quantization and the electric neutrality of the neutron. • New Infrastructure (UCN-Source, cold Neutrons) • * Coordinators (S. Paul, H.A. ) • Exzellenzcluster ‚Universe‘ München • Techn. Univ. München* • PTB Berlin • Vienna University of Technology*
Priority Programme 1491 • Research Area A: CP-symmetry violation and particle physics in the early universe • Neutron EDM E = 10-23eV • Research Area B: The structure and nature of weak interaction and possible extensions of the Standard Model • Neutron b-decayV – A Theory • Research Area C: Relation between gravitation and quantum theory • Neutron boundgravitationalquantumstates • Research Area D: Charge quantization and the electric neutrality of the neutron • Neutron charge • Research Area E: New measuring techniques • Particle detection • Magnetometry • Neutron optics
Neutron Alphabet deciphersthe SM Parameters Strength: GF Quark mixing: Vud Ratio: = gA/gV A Neutron Spin Electron B Neutrino C Proton Observables • Lifetime • Correlation A • Correlation B • Correlation C • Correlation a • Correlation D • Correlation N • Correlation Q • Correlation R • Beta Spectrum • Proton Spectrum • Polarized Spectra • Beta Helicity a D Q R R N High Precision - Low Energy
Key Instrument: PERC A clean, bright and versatile source of neutron decay products Univ.Heidelberg & TU Wien, Mainz, ILL,FRM2,TU Munich • High Flux : = 2 x 1010 cm-2s-1 • Decay rate of 1 MHz / metre • Polarizer: 99.7 ± 0.1 % • Spin Flipper: 100.05 ± 0.1 % • Analyzer: 100 % 3He-cells B. Maerkisch talk Berlin 2012 Chopper Polarizer Analyzingarea Decay Volume, 8m Spin flipper n-guide + solenoid: field B0 polarized, monochromatic n-pulse Beam stop solenoid, field B2 p+ + e− window-frame p+ + e− beam n + γ-beam stop solenoid, field B1 v- selector
Origin of nature’s lefthandedness Standard Model: Elektroweak interaction 100% lefthanded Grand unified theories: Universe was left-right symmetric at the beginning Parity violation = 'emergent' Order parameter <100% Neutron decay: Correlation B + A: Mass right handed W-Boson: mR > 280 GeV/c2 Phase: -0.20 < < 0.07 WL WR 41
Grand Challenges • Sensitive toanytheorybeyondthe Standard Model • LeftRightSymmetry • Supersymmetry • Tensor orscalarinteractions • GUT
Priority Programme 1491 • Research Area A: CP-symmetry violation and particle physics in the early universe • Neutron EDM • Research Area B: The structure and nature of weak interaction and possible extensions of the Standard Model • Neutron b-decay • Research Area C: Relation between gravitation and quantum theory • Neutron boundgravitationalquantumstates • Research Area D: Charge quantization and the electric neutrality of the neutron • Neutron charge • Research Area E: New measuring techniques • Particle detection • Magnetometry • Neutron optics
Charge quantization and the electric neutrality of the neutron. • Sincethe Standard Model value for qn requires extreme fine tuning, the smallness of this value may be considered as a hint for GUTs, where qn is equal to zero. • Improve limit by two orders of magnitude
qBounceSummary • Progress Report with Galileo in Quantum Land • qBounce: firstdemonstrationofthequantumbouncing ball • Dynamics: time evolutionofcoherentsuperpositionofAiry-eigenfunctions • Realizationof Gravity ResonanceSpectroscopy: • Coherent Rabi-Transitions, • |1> |2> • |1> |3>, see Nature Physics, 1 June 2011 • |2> |3>, |2> |4> • New Tool for • A Searchfor a deviationfromNewton‘s Law atshortdistances, wherepolarizabilityeffectsareextremelysmall , see H.A. et al., PRD 81, 065019 (2010) [arXiv:0907.5447 ] • A quantumtestoftheequivalenceprinciple • Directlimits on axioncoupling / chameleonsatshortdistances,