1 / 33

Laboratory spectroscopy of H 3 +

Laboratory spectroscopy of H 3 +. Ben McCall Oka Ion Factory TM University of Chicago. Motivations. Astronomical obtain frequencies for detection & use as probe Quantum Mechanical study structure of this fundamental ion refine theoretical calculations of polyatomics. H 2. e - impact.

enya
Download Presentation

Laboratory spectroscopy of H 3 +

An Image/Link below is provided (as is) to download presentation Download Policy: Content on the Website is provided to you AS IS for your information and personal use and may not be sold / licensed / shared on other websites without getting consent from its author. Content is provided to you AS IS for your information and personal use only. Download presentation by click this link. While downloading, if for some reason you are not able to download a presentation, the publisher may have deleted the file from their server. During download, if you can't get a presentation, the file might be deleted by the publisher.

E N D

Presentation Transcript


  1. Laboratory spectroscopy of H3+ Ben McCall Oka Ion FactoryTM University of Chicago

  2. Motivations • Astronomical • obtain frequencies for detection & use as probe • Quantum Mechanical • study structure of this fundamental ion • refine theoretical calculations of polyatomics

  3. H2 e- impact laboratory plasma interstellar medium H2 cosmic ray Formation of H3+ H2 Proton Affinity: ~ 4.4 eV ~ 100 kcal/mol ~ D(H2) H2+ + H2 H3+ + H Rate constant: k ~ 2 × 10-9 cm3 s-1 Exothermicity: H ~ 1.7 eV

  4. Laboratory Plasma

  5. e e Electronic (visible) Rotational (microwave) Vibrational (infrared) Types of Molecular Spectroscopy × × Poster: Friedrich & Alijah 

  6. Vibrational Modes of H3+ 1 2x 2y Infrared inactive Infrared active Degenerate  any linear combination

  7. Vibrational Modes of H3+ 1 2x 2y 2+ vibrational angular momentum

  8. I=3/2 I=1/2 para ortho Quantum Numbers for H3+ • Angular momentum • I — nuclear spin • J — nuclear motion • k = projection of J ; K = |k| • l2 — vibration • “l-resonance”: states with same |k-l2| mixed • G  |k-l2| — rotational part of J • Symmetry requirements • G=3n  ortho, G3n  para • Pauli: certain levels forbidden (J=even, G=0)

  9. 2 state Q(1,0) R(1,0) R(1,1)l R(1,1)u P(3,3) ortho para para ortho The 2  0 fundamental band J (J,G) {u,l} ground state 0 1 2 3 G

  10. 217 206 207 J=15 151 J=9 113 Continuous scan 3000 – 3600 cm-1 Lowest frequency 1546.901 cm-1 FTIR absorption wide-band FTIR emission FTIR emission FTIR absorption 46 30 15 Oka 1980 Oka 1981 Nakanaga et al. 1990 McKellar & Watson 1998 Joo et al. 2000 Watson et al. 1984 Majewski et al. 1987 Uy et al. 1994 Majewski et al. 1994 Lindsay et al. 2000 Experimental work on 2  0 • Initial Detection (Oka 1980) • search over two years, over 500 cm-1 • 15 lines, few percent deep • assigned by Watson overnight • 2 = 2521 cm-1

  11. The 2  0 band as a probe of H3+ • Laboratory • H3+ electron recombination rate (Amano 1988) • spin conversion of H3+ in reactions (Uy et al. 1997) • ambipolar diffusion in plasmas (Lindsay, poster) • Astronomy • probe of planetary ionospheres (Connerney, Miller) • confirmation of interstellar chemistry (Herbst) • measurements of interstellar clouds (Geballe)

  12. Spacing illustrates large rotational constants (B ~ 44 cm-1) No R(0) line  three equivalent spin 1/2 fermions  equilateral triangle geometry 2:1 intensity ratios reflect spin statistical weights (ortho/para) The fundamental band Q R(J)u P(J)u R(J)l T=400 K

  13. Understanding the 2Spectrum • For low energies, use perturbation approach: • E” = BJ(J+1) + (C-B)K2 - DJKJ(J+1)K2 + ... • E’ = 2 + B’J’(J’+1) + (C’-B’)K’2 - 2C’K’l + ... • use observed transitions to fit molecular constants • For higher vibrational energies, this approach completely breaks down • Variational calculations based on an ab initio potential energy surface!

  14. Zero Point Vibrational Energy Variational Calculations  R R

  15. Overtones: n2  0 Combination: 1 + 22  0 Hot band: 22  2 Forbidden: 1  0 Fundamental: 2  0 Vibrational Band Types

  16. 2  0 22  0 32  0 1+22  0 22  2 42  0 1  2 32  2 1+2  1 21+2  0 1+2  0 52  0 Vibrational Overview

  17. 2  0 Ti:Sapphire (1 W) Diodes (8 mW) FCL (30 mW) 22  0 D.F. (LiNbO3) (0.1 mW) D.F. (LiIO3) (20 µW) 32  0 1+22  0 22  2 42  0 1  2 32  2 1+2  1 21+2  0 1+2  0 52  0 Vibrational Overview

  18. 2  0 Ti:Sapphire (1 W) Diodes (8 mW) FCL (30 mW) 22  0 D.F. (LiNbO3) (0.1 mW) D.F. (LiIO3) (20 µW) 32  0 1+22  0 22  2 42  0 1  2 32  2 1+2  1 21+2  0 1+2  0 52  0 Vibrational Overview

  19. Hot Bands • At 600 K, ~200 times weaker than fundamental • He dominated discharge  only 50 times weaker • Bawendi et al. (1990) • 72 lines of 222  2 • 14 lines of 220  2 • 21 lines of 1+2  1 • Variational calculations essential in assignment • Sutcliffe 1983; Miller & Tennyson 1988, 1989

  20. First Overtone Band: 22  0 • First overtone (22  0) usually orders of magnitude weaker than fundamental • In H3+, only about 7 times weaker • Discovery: • (in hindsight) Majewski et al. (1987) • Jupiter (Trafton et al. 1989, Drossart et al. 1989) • Assigned by Watson (with aid of hot bands) • Majewski et al. (1989) – 47 transitions, FTIR • Xu et al. (1990) – transitions observed in absorption

  21. 1 222 0 Q(1,1) nP(2,2) 1 2 0 P(2,1) 2 E12 1 0 Absolute Energy Levels • Fundamental: G = 0 • Hot bands: G = 0 • Overtone band: G = ±3 • (n  G = -3, t  G = +3) • Absolute energy levels G=0 G=1 G=2 G=3

  22. Second Overtone Band: 32  0 • ~ 200 times weaker than fundamental • Band origin ~ 7000 cm-1 • Tunable diode lasers • Lee et al. (1991), Ventrudo et al. (1994) • 15 transitions observed • Assigned based on variational calculations • Miller & Tennyson (1988, 1989)

  23. Forbidden Band 1  0 • 1 mode totally symmetric  infrared inactive • 1  0 very forbidden since 1 & 2 not coupled • First mixing term: “Birss resonance” • mixes levels in 1 & 2 with same J, G=3 • effective for accidental degeneracies (fairly high J) • Xu et al. (1992) • 9 lines • 1 = 3178 cm-1 • Lindsay et al. (2000) • 10 new lines 1 state J=5 2 state G=5 G=2 J=5 ground state J=4

  24. Forbidden Band 1+2  2 • Not as forbidden as 1  0 • anharmonicity of potential mixes 1+2 with other states (e.g. 222) • 1+2  2 can “borrow” intensity from allowed bands (e.g. 222  2) • Xu et al. (1992) observed 21 lines

  25. Combination Bands • 1+222  0 • Highest energy band • Weakest allowed band • 270 times weaker than 2 • Tunable diode laser • 7780 – 8168 cm-1

  26. 2 of 21+21  0 Observed Spectrum 28 transitions of 1+222  0

  27. Table of Results Predictions from J. K. G. Watson

  28. Table of Results Predictions from J. K. G. Watson

  29. 1+222 Energy Levels JG* <l2>

  30.        Breaking the Barrier to Linearity

  31. Future Prospects • Improvements in Theory • Hyperspherical coordinates for linearity (Watson) • Relativistic effects (Jaquet) • Non-adiabatic effects (Polyansky & Tennyson 1999) • Experimental Advances • Titanium:Sapphire laser, Dye laser • New techniques (heterodyne, cavities?) • 42  0, 52  0 on the horizon • ... 102  0 in the future??

  32. Acknowledgements • Oka • J. K. G. Watson • Fannie and John Hertz Foundation • NSF • NASA

  33. × × 1014 cm-2 1014 cm-2 = = Column Density of H3+ (concentration) × (path length)  Column Density Laboratory: 1011 cm-3 103 cm Molecular Cloud: 10-4 cm-3 1018 cm Laboratory and astronomical spectroscopy progressing together!

More Related