400 likes | 465 Views
New Laboratory and Theoretical Studies of Astrophysically Important Reactions of H 3 +. Ben McCall. Dept. of Chemistry. Dept. of Astronomy. Outline. Background Importance of H 3 + Interstellar Clouds H 3 + in Diffuse Clouds Abundance: H 3 + + e - → H + H + H
E N D
New Laboratory and Theoretical Studies of Astrophysically Important Reactions of H3+ Ben McCall Dept. of Chemistry Dept. of Astronomy
Outline • Background • Importance of H3+ • Interstellar Clouds • H3+ in Diffuse Clouds • Abundance: H3+ + e-→ H + H + H • Ortho/Para: p-H3+ + e-→ H + H + H H3+ + H2 → H3+ + H2 • H3+ in Dense Clouds • Abundance: H3+ + O → OH+ + H2 • Puzzle: H3+ + O2 ↔ HO2+ + H2
H He Ne O C N Si S Ar Mg Fe Astronomer's Periodic Table
H3+ + O H2 + OH+ OH+ + H2 H + H2O+ H2O+ + H2 H + H3O+ H3O+ + e- H2O + H NH3 Si NH2 H2CO CH H2O C2 C OH CO Proton Affinity (eV) CH4 CO2 N2 O H2 O2 N H3+: Cornerstone of Interstellar Chemistry
Persei Interstellar Cloud Classification Dense molecular clouds: • H H2 • C CO • n(H2) ~ 104–106 cm-3 • T ~ 20 K Diffuse clouds: • H ↔ H2 • C C+ • n(H2) ~ 101–103 cm-3 • [~10-15 Torr] • T ~ 50 K Snow & McCall ARAA, 44, 367 (2006) Pound ApJ 493, L113 (1998) Photo: Jose Fernandez Garcia
Outline • Background • Importance of H3+ • Interstellar Clouds • H3+ in Diffuse Clouds • Abundance: H3+ + e-→ H + H + H • Ortho/Para: p-H3+ + e-→ H + H + H H3+ + H2 → H3+ + H2 • H3+ in Dense Clouds • Abundance: H3+ + O → OH+ + H2 • Puzzle: H3+ + O2 ↔ HO2+ + H2
Steady State [H2] (310-17 s-1) [H3+] = = (2400) [e-] ke (510-7 cm3 s-1) Diffuse Cloud H3+ Chemistry Formation cosmic ray [H2] H2 H2+ + e- H2 + H2+ H3+ + H Rate = Destruction Rate = ke [H3+] [e-] H3+ + e- H + H2 or 3H dense cloud value = 10-7 cm-3 L ~ 3 pc ~ 1019cm N(H3+) ≡ L × [H3+] ~ 1012 cm-2 ΔI/I ~ 0.01%
Lots of H3+ in Diffuse Clouds! Cygnus OB2 12 HD 183143 N(H3+) ~ 1014 cm-2?!? McCall, et al. ApJ 567, 391 (2002)
(order of magnitude) [H2] [H3+] = [e-] ke Big Problem with the Chemistry! ^ Steady State: • To increase the value of [H3+], we need: • Smaller electron fraction [e-]/[H2] • Smaller recombination rate constant ke • Higher ionization rate ruled out by observations
Enigma of H3+ Recombination • Laboratory values of ke have varied by 4 orders of magnitude! • Problem: not measuring H3+ in ground states ke (cm3 s-1) Larsson, McCall, & Orel Chem. Phys. Lett., in press
H3+ 20 ns 45 ns H, H2 electron beam Ion Storage Ring Measurements CRYRING • Very simple experiment • Complete vibrational relaxation • Control H3+– e- impact energy • Rotationally cold ions from supersonic expansion source 900 keV 12.1 MeV 30 kV
CRYRING Results • Considerable amount of structure (resonances) in the cross-section • ke = 2.6 10-7 cm3 s-1 • Factor of two smaller McCall et al. Nature 422, 500 (2003)
Agreement with Other Work • Reasonable agreement between: • CRYRING • Supersonic expansion • TSR • 22-pole trap • Theory S.F. dos Santos, V. Kokoouline, and C. H. Greene, J. Chem. Phys. 127 (2007) 124309
Astrophysics!! [H2] [H3+] = [e-] ke Big Problem with the Chemistry! Steady State: • To increase the value of [H3+], we need: • Smaller electron fraction [e-]/[H2] • Smaller recombination rate constant ke • Higher ionization rate =7.410-16 s-1 (25× higher thandense clouds!) N. Indriolo, T. R. Geballe, T. Oka, & B. J. McCall, ApJ 671, 1736 (2007)
Low Energy Cosmic Rays? • Flux below <1 GeV essentially unconstrained • magnetic field due to solar wind • Large low E flux can reproduce observations! 1 MeV 2 MeV 10 MeV 20 MeV 50 MeV (diffuse) (dense) Photo: M.D. Stage, G. E. Allen, J. C. Houck, J. E. Davis, Nat. Phys. 2, 614 (2006) N. Indriolo, B. D. Fields & B. J. McCall, in preparation
Outline • Background • Importance of H3+ • Interstellar Clouds • H3+ in Diffuse Clouds • Abundance: H3+ + e-→ H + H + H • Ortho/Para: p-H3+ + e-→ H + H + H H3+ + H2 → H3+ + H2 • H3+ in Dense Clouds • Abundance: H3+ + O → OH+ + H2 • Puzzle: H3+ + O2 ↔ HO2+ + H2
R(1,1) R(1,0) + + go No -ΔE/kTex e = gp Np ΔE H3+ Ortho/Para Ratio Cygnus OB2 12 para I = 1/2 ortho I = 3/2 Tex ~ 27 K but Tkin ~ 60 K Why?
experiment para H2 normal H2 para-H3+ + e- vs. ortho-H3+ + e- TSR • para-H3+ fraction • unknown (~0.55?) theory para-H3+ ortho-H3+ K Theory: S.F. dos Santos, V. Kokoouline, and C. H. Greene, J. Chem. Phys. 127, 124309 (2007) Experiment: H. Kreckel, et al. Phys. Rev. Lett. 95, 263201 (2005)
Recent CRYRING Results 85% p-H3+ [100% p-H3+] ×2! 50% p-H3+ [100% o-H3+] • Big ortho-para difference • But ortho/para H3+ may be equilibrated by H3+ + H2 collisions B. Tom et al., in preparation
Outline • Background • Importance of H3+ • Interstellar Clouds • H3+ in Diffuse Clouds • Abundance: H3+ + e-→ H + H + H • Ortho/Para: p-H3+ + e-→ H + H + H H3+ + H2 → H3+ + H2 • H3+ in Dense Clouds • Abundance: H3+ + O → OH+ + H2 • Puzzle: H3+ + O2 ↔ HO2+ + H2
H3+ + H2→ (H5+)* → H3+ + H2 1 “identity” H5+ 3 “hop” 6 if purely statistical: α = hop/exchange = 0.5 “exchange”
D2d C2v Dynamical Effects C2v ~3000 cm-1 ~1500 cm-1 ~50 cm-1 “hop” “exchange” Not obvious that “statistical” α = hop/exchange = 0.5 is valid!
Energetic Effects • Angular momentum restrictions • e.g. p-H3+ + p-H2→ o-H3+ + p-H2 • At low T in pure p-H2, slow p-H3+→ o-H3+ 1/2 0 ↔ 3/2 0 ortho I = 3/2 para I = 1/2 ortho I = 1 170 K para I = 0
Cordonnier et al. JCP 113, 3181 (2000) hop ~2.4 exch T ~ 400 K α = ≠ 0.5! Oka Group Experiments Pulsed Hollow Cathode Positive Column Cell p-H3+ n-H2 p-H2 o-H3+ p-H3+ o-H3+ p-H2 n-H2 How does α vary with T?
Pinhole flange/ground electrode -450 V ring electrode H3+ Supersonic Expansion Ion Source Gas inlet 2 atm H2 • H3+ formed near nozzle • [p-H2] / [H2] fixed • [H2] / [H3+] >> Ncollisions • [p-H3+] / [H3+] reaches steady state in few coll. • [p-H3+] / [H3+] measured spectroscopically Solenoid valve McCall et al. PRA 70, 052716 (2004)
2.8 – 4.8 mm DFG System Nd:YAG 1064 nm 532 nm pump laser l/4 Ti:Sapph 700 – 990 nm l/2 AOM 25cm 20cm reference cavity l/2 PPLN InSb mode- matching lenses ringdown cavity Glan prism 20cm achromat dichroic
Cavity Ringdown Spectra • First results from our DFG laser! • Clear enhancement of para-H3+ in para-H2 • More enhanced in argon dilution • Trot ~ 80 K • R(1,1)u vs R(2,2)l ortho-H3+ para-H3+
H3+ + H2 Results o/p H3+ ratio not thermal, but steady state of H3+ + H2 Tex (Oka) ζPersei Tkin~60 K α=2.5 α=1.0 α=0.5 80 K Park & Light JCP 126, 044305 (2007)
Outline • Background • Importance of H3+ • Interstellar Clouds • H3+ in Diffuse Clouds • Abundance: H3+ + e-→ H + H + H • Ortho/Para: p-H3+ + e-→ H + H + H H3+ + H2 → H3+ + H2 • H3+ in Dense Clouds • Abundance: H3+ + O → OH+ + H2 • Puzzle: H3+ + O2 ↔ HO2+ + H2
CH H2O C2 C OH CO Proton Affinity (eV) CH4 CO2 N2 O H2 O2 O Ne N N H Ne He H3+ in Dense Clouds • Relatively few electrons • C → CO • H3+ destroyed by proton transfer • CO • O, O2? ? C CO
Dense Cloud H3+ Chemistry Formation cosmic ray ζ [H2] H2 H2+ + e- H2 + H2+ H3+ + H Rate = (fast) 210-9 cm3 s-1 Destruction Rate = kCO [H3+] [CO] H3+ + CO HCO+ + H2 = Rate = kO [H3+] [O] H3+ + O OH+ + H2 ?? Steady State 0.810-9 cm3 s-1 [H2] ζ (310-17 s-1) [H3+] = = (6700) [CO] kCO (210-9 cm3 s-1) = 10-4 cm-3 McCall, Geballe, Hinkle, & Oka ApJ 522, 338 (1999) L ~ 1 pc ~ 3×1018cm → N(H3+) ~ 3×1014 cm-2
H3+ + O → OH+ + H2 • At T<50, kO kCO • ζor L ↑ by factor of ~2 Stephen Klippenstein (2008) Tcloud Ryan Bettens (1999)
Outline • Background • Importance of H3+ • Interstellar Clouds • H3+ in Diffuse Clouds • Abundance: H3+ + e-→ H + H + H • Ortho/Para: p-H3+ + e-→ H + H + H H3+ + H2 → H3+ + H2 • H3+ in Dense Clouds • Abundance: H3+ + O → OH+ + H2 • Puzzle: H3+ + O2 ↔ HO2+ + H2
H3+ + O2↔ HO2+ + H2 • HO2+ is last simple protonated species yet to be observed spectroscopically • O2 difficult to observe in dense clouds; HO2+ may be a useful tracer? • Nearly thermoneutral formation reaction • Our work: • Re-examine thermochemistry • Calculate spectroscopic constants S. L. Widicus Weaver, D. E. Woon, B. Ruscic, and B. J. McCall, in preparation
Thermochemical Calculations • Active Thermochemical Tables (ATcT) • PA0 K(O2) = 417.18 ± 0.11 kJ/mol • PA0 K(H2) = 417.78 ± 0.01 kJ/mol • ΔrE0 = 0.60 ± 0.11 kJ/mol = 50 ± 9 cm-1 • Ab initio calculations • ΔEe valence complete basis set (CBS) limit: +222.1 cm-1 • ΔEe core-valence contribution +28.3 • harmonic vibrational ZPE correction -199.5 • anharmonic vibrational ZPE correction +76.4 • rotational ZPE correction -63.0 • ΔE0 net +64.3 cm-1 Branko Ruscic (Argonne) Dave Woon (Illinois) S. L. Widicus Weaver, D. E. Woon, B. Ruscic, and B. J. McCall, in preparation
n ( O ) + + = n ( HO ) 2 K n ( H ) 2 T 3 n ( H ) 2 Interstellar Abundance of HO2+ DrH°298 = 1.31 ± 0.11 kJ/mol DrG°298 = -1.75 ± 0.11 kJ/mol = 2 × (10-4 cm-3) × (10-4) N(HO2+) = n(HO2+) L ~ (2×10-8 cm-3)(3×1018 cm) ~ 6×1010 cm-2 (likely undetectable) S. L. Widicus Weaver, D. E. Woon, B. Ruscic, and B. J. McCall, in preparation
HO2+ Spectroscopic Constants S. L. Widicus Weaver, D. E. Woon, B. Ruscic, and B. J. McCall, in preparation
http://bjm.scs.uiuc.edu http://astrochemistry.uiuc.edu Acknowledgments H3+ Observations: Takeshi Oka (U. Chicago) Tom Geballe (Gemini) Storage Ring Measurements: Mats Larsson (Stockholm) Richard Thomas (Stockholm) Cosmic Ray Theory: Brian Fields (Illinois) H3+ + H2: Kisam Park (U. Chicago → TTU) H3+ + O: Stephen Klippenstein (Argonne) H3+ + O2: Susanna Widicus Weaver (Illinois → Emory) Dave Woon (Illinois) Branko Ruscic (Argonne) Michael Wiczer [and many others] Andrew Mills Kyle Crabtree Nick Indriolo Brian Tom NSF Chemistry, AMO Physics Critical Research Initiative NASA Laboratory Astrophysics
Spin-Modification Probability Products formed by Hop and Exchange Reactants Park & Light JCP 126, 044305 (2007)