1 / 6

Alumno: Israel Espinosa Jiménez Matricula: 10030093 Licenciatura: TIC

Alumno: Israel Espinosa Jiménez Matricula: 10030093 Licenciatura: TIC Asignatura: Estadística Descriptiva Cuatrimestre: 3. 1. Una organización de investigación de consumidores, ha estudiado los servicios con garantía, proporcionados por 50 agencias de automóviles nuevos en cierta ciudad:.

Download Presentation

Alumno: Israel Espinosa Jiménez Matricula: 10030093 Licenciatura: TIC

An Image/Link below is provided (as is) to download presentation Download Policy: Content on the Website is provided to you AS IS for your information and personal use and may not be sold / licensed / shared on other websites without getting consent from its author. Content is provided to you AS IS for your information and personal use only. Download presentation by click this link. While downloading, if for some reason you are not able to download a presentation, the publisher may have deleted the file from their server. During download, if you can't get a presentation, the file might be deleted by the publisher.

E N D

Presentation Transcript


  1. Alumno: Israel Espinosa Jiménez Matricula: 10030093 Licenciatura: TIC Asignatura: Estadística Descriptiva Cuatrimestre: 3

  2. 1 Una organización de investigación de consumidores, ha estudiado los servicios con garantía, proporcionados por 50 agencias de automóviles nuevos en cierta ciudad: Si una persona selecciona aleatoriamente una de las agencias que han operado por más de 10 años, ¿cuál es la probabilidad de que de un buen servicio? Respuesta Para analizar la respuesta pongamos la tabla con totales: Formula para obtener la probabilidad de que de un buen servicio en las agencias que han operado más de 10 años: 16/20 = 80%. Lo anterior tomando el universo de la operación de 10 años o más. Sin embargo, la formula para obtener la probabilidad de que de un buen servicio en todas las agencias: 16/50 = 32%. Hay que tener en cuenta el universo para la operación.

  3. 2 Un dado esta arreglado de manera que cada número impar tiene doble probabilidad de ocurrir que un número par. Encuentra P(G), donde G es el evento en que un número mayor a 3 ocurra en un solo tiro del dado. Respuesta • Tenemos un dado con 6 caras • En un dado normal la probabilidad de que caiga cualquier número sería: 1/6 = 16.66% • Sin embargo el dato está arreglado pata que cada número impar tenga doble probabilidad. • Es decir, en un dado de 6 caras, podríamos contemplarlo de la siguiente manera: 3 pares vs 6 impares (el doble), es decir , debiéramos calcular la probabilidad de sacar un par o un impar entre 9. • Lo anterior nos dice que para sacar un par la probabilidad es: 3/9 = 33.33% • Y para sacar un impar la probabilidad es: 6/9 = 66.66% • Otro dato importante es obtener la probabilidad de una cara: 1/9 = 11.11%, siendo que para los impares hay que multiplicarlo por 2, es decir, 22.22%. • Con estos últimos datos es fácil obtener P(G). Tenemos únicamente que sumar la probabilidad de obtener las caras 4,5,6. Es decir: 11.11% + 22.22% + 11.11% • Lo anterior nos P(G): 44.44% 3 Considerando el mismo dado, ¿cuál es la probabilidad que el número de puntos tirados sea un cuadrado perfecto y mayor a 3? Respuesta • Agarrando el análisis del ejemplo anterior. Tenemos únicamente que sacar la probabilidad de obtener las cara 4 (el único cuadrado perfecto posible de un dado mayor a 3) • Es decir: 11.11%

  4. 4 Continuando, ¿cuál es la probabilidad que sea cuadrado perfecto dado que es mayor a 3? Respuesta • Aquí nuestro universo cambia. Solamente estamos contemplando las caras mayores a 3. • Tomaremos nuevamente el dato de obtener la probabilidad de una cara: 1/9 = 11.11%, siendo que para los impares hay que multiplicarlo por 2, es decir, 22.22%. • Entonces nuestro universo serán las caras: 4,5,6, es decir 11.11% + 22.22% + 11.11% = 44.44% • Entonces, la probabilidad de sacar un número 4 (él único cuadrado perfecto posible mayor a 3) es: 1/4 = 25.00% 5 Un fabricante de partes de aeroplano sabe por experiencia que la probabilidad que una orden esté lista para embarque a tiempo, es 0.80, y que esté lista para embarque y también se entregue a tiempo, es 0.72. ¿cuál es la probabilidad que la orden se entregue a tiempo dado que estuvo lista para embarque a tiempo? Respuesta • Este caso se trata de una probabilidad condicional • Recordemos la formula: P(A intersección B) / P(B) • En este caso P(A intersección B) = 0.72, y P(B) = 0.80 • Es decir: 0.072 / 0.80 =0.9

  5. 6 En un cierto estado, 25% de todos los automóviles emiten cantidades excesivas de contaminantes. Si la probabilidad es 0.99 de que un auto que emite cantidades excesivas de contaminantes fallará las pruebas de emisión vehicular del estado, y la probabilidad es de 0.17 que un auto no emite cantidades excesivas de contaminantes aún así fallará la prueba, ¿cuál es la probabilidad de que un auto que falla la prueba emita cantidades excesivas de contaminantes? Respuesta • Este caso se trata de una probabilidad condicional • Recordemos la formula: P(A intersección B) / P(B) • En este caso P(A intersección B) = 0.99, y P(B) = 25.00 • Es decir: 0.99 / 25 =0.0396 7 Un fabricante de cámaras digitales utiliza un microchip en el ensamble de cada cámara que produce. Los microchips se compran a los fabricantes A,B,C, y se seleccionan de manera aleatoria para ensamblar. 20% de los microchips provienen de A, 35% de B y el resto de C. Con base en la experiencia el fabricante, cree que la probabilidad que un microchip del fabricante A sea defectuoso es 0.03, y las probabilidades para B y C son respectivamente 0.02 y 0.01. Se selecciona una cámara de producción de un día de manera aleatoria, y se encuentra que el microchip que contiene es defectuoso; ¿cuál es la probabilidad que haya sido suministrado por el fabricante A? Respuesta • Este caso se trata de una probabilidad condicional • Recordemos la formula: P(A intersección B) / P(B) • En este caso P(A intersección B) = 0.03, y P(B) = 20 • Es decir: 0.03 / 20 =0.0015

  6. 8 Con la información del ejercicio 7: ¿Cuál es la probabilidad que haya sido suministrado por el fabricante B? Respuesta • Este caso se trata de una probabilidad condicional • Recordemos la formula: P(A intersección B) / P(B) • En este caso P(A intersección B) = 0.02, y P(B) = 35 • Es decir: 0.02 / 35 =0.00057143 ¿Cuál es la probabilidad que haya sido suministrado por el fabricante C? Respuesta • Este caso se trata de una probabilidad condicional • En este caso P(A intersección B) = 0.01, y P(B) = 45 • Es decir: 0.01 / 45 =0.00022222 9 Dos bolsas idénticas (bolsa I y bolsa II) están sobre una tabla; la bolsa uno contienen un caramelo rojo y uno negro; la bolsa II contiene dos caramelos rojos. Se selecciona una bolsa al azar, y de ésta se toma un caramelo de manera aleatoria. El caramelo es rojo, ¿cuál es la probabilidad que el siguiente caramelo de la bolsa seleccionada sea rojo? Respuesta • Este caso se trata de una probabilidad condicional • Al principio, tomando en cuenta que son cuatro caramelos, y solo uno es negro, se tiene que la probabilidad de sacar uno rojo es 75% y uno negro es 25% • Al quitar uno rojo, tomando en cuenta que son tres caramelos ya, se tiene que la probabilidad de sacar uno rojo es 66% y uno negro es 34% • En este caso P(A intersección B) = 66, y P(B) = 100 (probabilidad de los caramelos restantes) • Es decir: 66 / 100 =0.66

More Related