1 / 237

Stats 845

Stats 845. Applied Statistics. This Course will cover:. Regression Non Linear Regression Multiple Regression Analysis of Variance and Experimental Design. The Emphasis will be on:. Learning Techniques through example: Use of common statistical packages. SPSS Minitab SAS SPlus.

Download Presentation

Stats 845

An Image/Link below is provided (as is) to download presentation Download Policy: Content on the Website is provided to you AS IS for your information and personal use and may not be sold / licensed / shared on other websites without getting consent from its author. Content is provided to you AS IS for your information and personal use only. Download presentation by click this link. While downloading, if for some reason you are not able to download a presentation, the publisher may have deleted the file from their server. During download, if you can't get a presentation, the file might be deleted by the publisher.

E N D

Presentation Transcript


  1. Stats 845 Applied Statistics

  2. This Course will cover: • Regression • Non Linear Regression • Multiple Regression • Analysis of Variance and Experimental Design

  3. The Emphasis will be on: • Learning Techniques through example: • Use of common statistical packages. • SPSS • Minitab • SAS • SPlus

  4. What is Statistics? It is the major mathematical tool of scientific inference - the art of drawing conclusion from data. Data that is to some extent corrupted by some component of random variation (random noise)

  5. An analogy can be drawn to data that is affected by random components of variation to signals that are corrupted by noise.

  6. Quite often sounds that are heard or received by some radio receiver can be thought of as signals with superimposed noise.

  7. The objective in signal theory is to extract the signal from the received sound (i.e. remove the noise to the greatest extent possible). The same is true in data analysis.

  8. Example A: Suppose we are comparing the effect of three different diets on weight loss.

  9. An observation on weight loss can be thought of as being made up of two components:

  10. A component due to the effect of the diet being applied to the subject (the signal) •  A random component due to other factors affecting weight loss not considered (initial weight of the subject, sex of the subject, metabolic makeup of the subject.) random noise.

  11. Note: that random assignment of subjects to diets will ensure that this component will be a random effect.

  12. Example B In this example we again are comparing the effect of three diets on weight gain. Subjects are randomly divided into three groups. Diets are randomly distributed amongst the groups. Measurements on weight gain are taken at the following times - - one month - two months - 6 months and - 1 year  after commencement of the diet.

  13. In addition to both the factors Time and Diet effecting weight gain there are two random sources of variation (noise) - between subject variation and - within subject variation

  14. Deterministic factors Diet Time Response weight gain Random Noise within subject between subject This can be illustrated in a schematic fashion as follows:

  15. Questions arise about a phenomenon Conclusion are drawn from the analysis A decision is made to collect data Statistics Statistics A decision is made as how to collect the data The data is summarized and analyzed The data is collected The circle of Research

  16. Notice the two points on the circle where statistics plays an important role: • The analysis of the collected data. • The design of a data collection procedure

  17. The analysis of the collected data. • This of course is the traditional use of statistics. • Note that if the data collection procedure is well thought out and well designed, the analysis step of the research project will be straightforward. • Usually experimental designs are chosen with the statistical analysis already in mind. • Thus the strategy for the analysis is usually decided upon when any study is designed.

  18. It is a dangerous practice to select the form of analysis after the data has been collected ( the choice may to favour certain pre-determined conclusions and therefore in a considerable loss in objectivity ) • Sometimes however a decision to use a specific type of analysis has to be made after the data has been collected (It was overlooked at the design stage)

  19. The design of a data collection procedure • the importance of statistics is quite often ignored at this stage. • It is important that the data collection procedure will eventually result in answers to the research questions.

  20. And will result in the most accurate answers for the resources available to research team. • Note the success of a research project should not depend on the answers that it comes up with but the accuracy of the answers. • This fact is usually an indicator of a valuable research project..

  21. Some definitions important to Statistics

  22. A population: this is the complete collection of subjects (objects) that are of interest in the study. There may be (and frequently are) more than one in which case a major objective is that of comparison.

  23. A case (elementary sampling unit): This is an individual unit (subject) of the population.

  24. A variable: a measurement or type of measurement that is made on each individual case in the population.

  25. Types of variables Some variables may be measured on a numerical scale while others are measured on a categorical scale. The nature of the variables has a great influence on which analysis will be used. .

  26. For Variables measured on a numerical scale the measurements will be numbers. Ex: Age, Weight, Systolic Blood Pressure For Variables measured on a categoricalscale the measurements will be categories. Ex: Sex, Religion, Heart Disease

  27. Types of variables In addition some variables are labeled as dependent variables and some variables are labeled as independent variables.

  28. This usually depends on the objectives of the analysis. Dependent variables are output or response variables while the independent variables are the input variables or factors.

  29. Usually one is interested in determining equations that describe how the dependent variables are affected by the independent variables

  30. A sample: Is a subset of the population

  31. Types of Samples different types of samples are determined by how the sample is selected.

  32. Convenience Samples In a convenience sample the subjects that are most convenient to the researcher are selected as objects in the sample. This is not a very good procedure for inferential Statistical Analysis but is useful for exploratory preliminary work.

  33. Quota samples In quota samples subjects are chosen conveniently until quotas are met for different subgroups of the population. This also is useful for exploratory preliminary work.

  34. Random Samples Random samples of a given size are selected in such that all possible samples of that size have the same probability of being selected.

  35. Convenience Samples and Quota samples are useful for preliminary studies. It is however difficult to assess the accuracy of estimates based on this type of sampling scheme. Sometimes however one has to be satisfied with a convenience sample and assume that it is equivalent to a random sampling procedure

  36. A population statistic (parameter): Any quantity computed from the values of variables for the entire population.

  37. A sample statistic: Any quantity computed from the values of variables for the cases in the sample.

  38. Statistical Decision Making

  39. Almost all problems in statistics can be formulated as a problem of making a decision . • That is given some data observed from some phenomena, a decision will have to be made about the phenomena

  40. Decisions are generally broken into two types: • Estimation decisions and • Hypothesis Testing decisions.

  41. Probability Theory plays a very important role in these decisions and the assessment of error made by these decisions

  42. Definition: A random variable X is a numerical quantity that is determined by the outcome of a random experiment

  43. Example: An individual is selected at random from a population and X = the weight of the individual

  44. The probability distribution of a random variable (continuous) is describe by: its probability density curve f(x).

  45. i.e. a curve which has the following properties : • 1.      f(x) is always positive. • 2.      The total are under the curve f(x) is one. • 3.      The area under the curve f(x) between a and b is the probability that X lies between the two values.

  46. Examples of some important Univariate distributions

  47. Normal distribution with m = 50 and s =15 Normal distribution with m = 70 and s =20 1.The Normal distribution A common probability density curve is the “Normal” density curve - symmetric and bell shaped Comment:If m = 0 and s = 1 the distribution is called the standard normal distribution

  48. 2.The Chi-squared distribution with n degrees of freedom

More Related