180 likes | 285 Views
-Special Segments in Triangles. 2.1b: Triangle Properties. CCSS.
E N D
-Special Segments in Triangles 2.1b: Triangle Properties CCSS G-CO.10 Prove theorems about triangles. Theorems include: measures of interior angles of a triangle sum to 180°; base angles of isosceles triangles are congruent; the segment joining midpoints of two sides of a triangle is parallel to the third side and half the length; the medians of a triangle meet at a point. GSE’s M(G&M)–10–2 Makes and defends conjectures, constructs geometric arguments, uses geometric properties, or uses theorems to solve problems involving angles, lines, polygons, circles, or right triangle ratios(sine, cosine, tangent) within mathematics or across disciplines or contexts
Median • Connects a vertex to the of the opposite side MIDDLE B Tells us that it cut the side BC in half so BD DC F D When you combine ALL the medians of one triangle, you get the CENTROID A C E A centroid would balance the triangle if you held it up with a pencil
Example Determine the coordinates of J so that SJ is a median of the triangle. Ans: Use the midpoint formula for GB J = J ( 9, 0.5) J = J =
Altitude Connects the vertex to where it is perpendicular to the opposite side Combine all three ALTIUDE’S in a triangle and you get a ORTHOCENTER A Z T W R P Tells us the segment is perpendicular
Example BD is an altitude of Triangle ABC Find BC, and AC Ans: 7x+20=90 7x = 70 3x-5 X = 10 But wait….. Re-read the question Find BC, so BC = 3(10)-5 = 25
Angle Bisector • A segment that cuts one vertex angle in half and goes to the opposite side of the triangle Draw angle bisector AF B Indicates the angle A was bisected F A C
Example N Find m NWB if WT is an angle bisector Of WNB T m NWT = 3x + 8 m NWB = 3x + 34 3x+8 ANS: Draw your diagram W 3x+8 + 3x+8 = 3x + 34 6x + 16 = 3x + 34 3x = 18 x = 6 3(6) + 34 = 52 B
Perpendicular Bisector • A segment that: 1) is perpendicular to one side of the triangle 2) bisects the same side H Draw the segment AT that is a perpendicular bisector of BO on Triangle HBO B O
example • Name all segments that are (if any) • Angle Bisectors • Perpendicular Bisectors • Altitudes • Medians QU NONE RT SP
Example • has vertices A(-4,1) , B ( 1, 6) and C (3, -4). Find: 1) The coordinate of T if it is on AB and TR is a perpendicular bisector to side AB 2) Find the slope of TR