440 likes | 618 Views
Embryological Electronics First NASA/DoD Workshop on Evolvable Hardware. P. Marchal Centre Suisse d'Electronique et de Microtechnique SA Jaquet-Droz 1 CH-2007 Neuchâtel pierre.marchal@csem.ch http://www.csem.ch. Summary. Introduction to Bio-inspired Systems Embryological Electronics
E N D
Embryological ElectronicsFirst NASA/DoD Workshop onEvolvable Hardware P. Marchal Centre Suisse d'Electronique et de Microtechnique SA Jaquet-Droz 1 CH-2007 Neuchâtel pierre.marchal@csem.ch http://www.csem.ch
Summary • Introduction to Bio-inspired Systems • Embryological Electronics • What is presently available? • Open Avenues for Evolvable Hardware • Conclusion
Introduction to Bio-inspired Systems What is bio-inspiration? Building complex systems Genome-based design
Bio-inspiration? • Nature has acquired a strong experience in complex system design : • 3-billion years of R &D • Powerful constructions (built and maintained) : • longer than hundreds years (animal life) • longer than thousands years (plant life) • Adapting and Evolving solutions: • personal modification is adaptation or learning • inherited modification is evolution
January, the 1st Earth formation March, the 1st Sedimentary rocks May, the 1st First cells : prokaryotes July, the 1st Free oxygen in the air September, the 1st Eukaryotes: differentiated nucleus November, the 19th Cambrian explosion: fossil era December, the 26th Death of dynosaurs At 9:00 pm Homo erectus At 11:45 pm Homo sapiens At 12:00 pm You December, the 31st January, the 1st Y 2 K bug 3-billion years shrinked into 1 year
Fields of Bio-inspiration evolution healing perceptron Neural nets self- structuration actuators perception sensors Neural nets Genetic algo mechanics VLSI optics Artificial life algorithms
0.1mm fertilized egg 1/2 hour, 1 cell 3 hours, 64 cells 6 hours, 10'000 cells Building Complex Systems2.- Nature’s Approach (1)
Building Complex Systems2.- Nature’s Approach (2) MUSCLE CELL LYMPHOCYTES SPERMATOZOON LEUCOCYTE OSTEOCYTE RED CELLS 10 hours, 30'000 cells FIBROPLAST NERVE CELL
Interconnection Part Horizontal Buses Field Programme Functional Vertical Part Buses Field Programmable Gate Arrays
Von Neumann Contribution • He proposed that the production of an automaton by another one should be composed of two phases: • information is once read and copied (transcription) • information is then read and interpreted (translation) • He conceived a self-reproducing automaton
Embryological Electronics Reproduction Adaptation Evolution
A cell composed of proto-cells • The silicon cell is composed of: • Genome memory • Address computation • Functional cell • Failure handling
Nucleus-like proto-cell • Its function is to: • store the genogram (set of bit-strings - “genes” - that describes the functionality of the silicon cell) • transmit a copy of the genogram to neighbouring cells • boot the address computation
6 0 0 0 3 0 0 3 = 0 2 = 0 2 5 2 3 0 0 1 2 0 = 3 = 2 1 0 0 4 0 0 0 = 1 3 = 2 1 0 0 0 0 1 0 0 = = 0 2 0 2 0 Storing Process .
23306 00000 22302 23306 00000 22302 23306 00000 22302 23306 00000 22302 23306 00000 22302 32040 32000 22000 32040 32000 22000 32040 32000 22000 32040 32000 22000 32040 32000 22000 01001 10001 01050 01001 10001 01050 01001 10001 01050 01001 10001 01050 01001 10001 01050 23306 00000 22302 23306 00000 22302 23306 00000 22302 23306 00000 22302 23306 00000 22302 32040 32000 22000 32040 32000 22000 32040 32000 22000 32040 32000 22000 32040 32000 22000 01001 10001 01050 01001 10001 01050 01001 10001 01050 01001 10001 01050 01001 10001 01050 23306 00000 22302 23306 00000 22302 23306 00000 22302 23306 00000 22302 23306 00000 22302 32040 32000 22000 32040 32000 22000 32040 32000 22000 32040 32000 22000 32040 32000 22000 01001 10001 01050 01001 10001 01050 01001 10001 01050 01001 10001 01050 01001 10001 01050 23306 00000 22302 23306 00000 22302 23306 00000 22302 23306 00000 22302 23306 00000 22302 32040 32000 22000 32040 32000 22000 32040 32000 22000 32040 32000 22000 32040 32000 22000 01001 10001 01050 01001 10001 01050 01001 10001 01050 01001 10001 01050 01001 10001 01050 Each Nucleus stores its own copy . 6 0 0 0 3 0 0 3 = 0 2 = 0 2 5 2 3 0 0 1 2 0 = 3 = 2 1 0 0 4 0 0 0 = 1 3 = 2 1 0 0 0 0 1 0 0 = = 0 2 0 2 0
Gradient-like control proto-cell • Its function is to: • compute the local address (row & column coordinates) • transmit a copy of the local address to the neighbouring cells • boot the differentiation process (gene expression)
0 , 1 Local Address Computation
1,4 2,4 3,4 4,4 1,3 2,3 3,3 4,3 5,3 1,2 2,2 3,2 4,2 5,2 2,1 3,1 4,1 5,1 Continuous Gradient 5,4 0 , 1 1,1
1,1 2,1 1,1 2,1 1,3 2,3 1,3 2,3 1,3 1,2 2,2 1,2 2,2 1,2 2,1 1,1 2,1 1,1 Repeating Structures 1,1 0 , 1 1,1
Cell Differentiation • the local address is used to pick up, out of the genogram memory, the gene corresponding to that location • the gradient like process enables cell differentiation
23306 00000 22302 23306 00000 22302 23306 00000 22302 23306 00000 22302 23306 00000 22302 32040 32000 22000 32040 32000 22000 32040 32000 22000 32040 32000 22000 32040 32000 22000 01001 10001 01050 01001 10001 01050 01001 10001 01050 01001 10001 01050 01001 10001 01050 1,1 2,1 3,1 1,1 2,1 23306 00000 22302 23306 00000 22302 23306 00000 22302 23306 00000 22302 23306 00000 22302 32040 32000 22000 32040 32000 22000 32040 32000 22000 32040 32000 22000 32040 32000 22000 01001 10001 01050 01001 10001 01050 01001 10001 01050 01001 10001 01050 01001 10001 01050 1,3 2,3 3,3 1,3 2,3 23306 00000 22302 23306 00000 22302 23306 00000 22302 23306 00000 22302 23306 00000 22302 32040 32000 22000 32040 32000 22000 32040 32000 22000 32040 32000 22000 32040 32000 22000 01001 10001 01050 01001 10001 01050 01001 10001 01050 01001 10001 01050 01001 10001 01050 1,2 2,2 3,2 1,2 2,2 23306 00000 22302 23306 00000 22302 23306 00000 22302 23306 00000 22302 23306 00000 22302 32040 32000 22000 32040 32000 22000 32040 32000 22000 32040 32000 22000 32040 32000 22000 01001 10001 01050 01001 10001 01050 01001 10001 01050 01001 10001 01050 01001 10001 01050 1,1 2,1 3,1 1,1 2,1 Differentiation Process .
Functional Cell • Its function is to: • load the programmable bit-string of the FPGA proto-cell with the local gene • realise a part of the logical function (distributed among the circuit area) • transmit convenient information with the appropriate neighbours
Reset D Q Clock Q Set Family of Cells INTER CONNECTION PART LOCAL GENE FIELD PROGRAMME FUNCTIONAL PART
Immune-like Proto-Cell • Its function is to: • determine the faulty behaviour of a cell, if any, and the severity of the fault • transmit the internal state (faulty or not) to the neighbours • boot the healing phase (restart address computation) if a fault has occurred
0 6 Healing Process 3 2 3 3 0 6 0 0 0 0 0 2 2 3 0 2 2 3 3 0 0 0 0 0 2 2 3 0 2 3 3 3 3 2 3 2 3 1 3 1 3 2 3 2 0 4 0 3 2 0 0 0 2 2 0 0 0 3 2 0 4 0 3 2 0 0 0 2 2 0 0 0 2 2 2 2 1 2 3 2 1 2 3 2 1 0 1 0 0 1 1 0 0 0 1 0 1 0 5 0 0 1 0 0 1 1 0 0 0 1 0 1 0 5 0 3 1 3 1 2 1 2 1 1 1 1 1 Y 1 2 3 4 5 6 X
0 6 2 2 3 0 2 2 3 3 0 6 0 0 0 0 0 0 0 0 0 0 3 2 3 3 2 3 2 3 1 3 1 3 3 3 2 2 0 0 0 3 2 0 0 0 3 2 0 4 0 3 2 0 0 0 2 3 2 0 4 0 1 2 1 2 2 2 3 2 2 2 0 1 0 5 0 1 0 0 0 1 1 0 0 0 1 0 1 0 0 1 1 0 1 0 0 1 2 1 2 1 1 1 1 1 3 1 Y 1 2 3 4 5 6 X Healing Process
What is presently available ? A family of self-structuring circuits
MUXTREE (EPFL - 94) BIODULE 600 DMUXTREE (CSEM - 95) S.T. HCMOS5 .5m GenomIC (CSEM 96) MIETEC HCMOS7 .75m MICTREE (EPFL - 97) BIODULE 602 SRMUX (EPFL - 98) BIODULE 603 FPOP (CSEM - 98) EM Marin SOI 1m FPPA (CSEM - 99) TSMC .35m FrameDISC (CSEM - 00) TSMC .25m Low Medium CELL COMPLEXITY High A family of self-structuring circuits
Open Avenues for Evolvable Hardware Applications Adaptation Evolution
Applications • Self-structuring and self-repairing VLSI should be considered in situations where changing and/or repairing is: • too difficult (under sea exploration) • too dangerous (nuclear exposition) • too expensive (deep space exploration) • too risky (human life is in danger) • and functionality should be conserved in presence of defects, radiations or wear out • Emerging applications in automotive (WINS project)
Adaptation • Reconfiguration is based on an event differing from the occurrence of a fault • Physical event adaptation: • swing of power lines • shift in temperature • Informational event adaptation: • change of signal’s bandwidth • object oriented processing
Evolution • Development is based on a description of the structure stored in a genome • Use the genetic algorithm and genetic programming techniques to evolve such systems • Two levels of description may be considered: • high level description evolution for synthesis • low level description evolution for adaptation
Parallelism, morphism and adaptation • Massive parallelism: • Multicellular organization • Morphism: • Configurable hardware • Adaptation: • Upgradable software • Reconfigurable hardware
To conclude • We have investigated this research domain • We have acquired the know-how to address a large amount of questions related to fault tolerance as well as evolvable hardware • We have the mastery of the technology • We have patents on it • We are ready to answer any question regarding this field