1 / 20

Analysing qualitative data

Analysing qualitative data. What is the input ?. - non-numeric data - not quantified - can be a product of all research strategies -> P rocedures for analysis can be BOTH deductive and inductive - computer aided qualitative data analysis software ( CAQDAS ).

eshe
Download Presentation

Analysing qualitative data

An Image/Link below is provided (as is) to download presentation Download Policy: Content on the Website is provided to you AS IS for your information and personal use and may not be sold / licensed / shared on other websites without getting consent from its author. Content is provided to you AS IS for your information and personal use only. Download presentation by click this link. While downloading, if for some reason you are not able to download a presentation, the publisher may have deleted the file from their server. During download, if you can't get a presentation, the file might be deleted by the publisher.

E N D

Presentation Transcript


  1. Analysingqualitativedata

  2. Whatistheinput? - non-numericdata - notquantified - canbe a productof all researchstrategies -> ProceduresforanalysiscanbeBOTHdeductive and inductive - computeraidedqualitativedataanalysissoftware (CAQDAS)

  3. Computeraidedqualitativedataanalysissoftware (CAQDAS) …usedinpsychology, marketing research, ethnographyetc + - efficientmeanstomanage and organizedata - rigorousdataanalysis - no manual and clericaltasks - savestime - manageshugeamountsofqualitativedata - increasesflexibility - improvesvalidity and auditabilityofqualitativeresearch - - increasinglydeterministic/ rigidprocesses - privilegingofcoding - reificationofdata - increasedpressuretofocus on volume/breadthratherthanon depth/meaning - time/ energyspentlearningtousecomputerpackages - increasedcommercialism - distractionfromthe real workofanalysis

  4. Differencesbetweenqualitative and quantitativedata • Quantitativedata: - Basedon meaningsderivedfromnumbers - Collectionresultinnumerical and standardiseddata - Analysisconductedthroughtheuseofdiagrams and statistics • Qualitativedata: - Basedon meaningsexpressedthroughwords - Collectionresultsinnon-standardiseddatarequiringclassificationintocategories -Analysisconductedthroughtheuseofconceptualisation

  5. Preparingyourdataforanalysis: transcribingqualitativedata • non-verbalinformationmayberelevant (pauses, laugh, sighs, coughs, thetoneofthevoice, thespeedoftalk) – notonly, whattheysaybuthowtheysayit • awfullytime-consuming – 6-10 h totranscribeeveryhourofaudio-recording • Accuratenessoftranscription – datacleaning • Saveeachinterviewasseparatefile; usefilenamethatmaintainsconfidentiality/ anonymity; helpsrecognizethetheperson • Distinguishbetweeninterviewer and participant(s) visually; useotheridentifiers – questionsinitalics, topicheadingsinboldetc; beconsistentacross all transcriptions • Havingthefullquestionintranscriptmaybeofimportanceifyouwanttounderstandlaterwhatthey are talkingabout :P • Planinadvance, howtheanalysiswillfollow – e.g., ifyouusesomeCAQDAS, remember, thattheymayrequiresometimes .txtfile so all yourhighlights, capitals and italicswillbegone :P

  6. Aga nüüd vaatasime seda lõiku ja sa nägid seda enne ka ja sa ütlesid, et ta võttis selle telefoni ära. Mis sa arvad, miks ta selle ära võttis? • V:Ta tahtis endale saada. • K:Vist küll. A siin oli üks teine tegelane veel. See mees. Kas tema ka midagi valesti tegi sinu arvates? • V:Jah, et ta ei hoiatand teda. • K:Aga mis sa arvad, miks ta ei hoiatanud? • V:Ei tea • K:Mis siin valesti tehti? • V:[ei saa aru] et siin nad võtsid selle koti ära ja viskasid ära, et ta ei saaks seda kätte. Too teine, kes seda pealt nägi, nemad ei hoiatand seda poissi. • K:Täpselt. Mis sa arvad, miks need kaks poissi seda väiksemat siis niimoodi kiusasid? • V:Et neile vist meeldis. • K:Aga miks see tädi, kes seal juures oli, miks ta appi ei läinud? Mis sa arvad? • V:Ta tegeles parajasti millegi muuga ja tal polnd tahtmist appi minna. • K:Jah, ma arvan, et sul on õigus. • Mis siin siis valesti tehti? • V:Et [ei sa aru] aga ta tegelt oskas seda ise ka teha. • K:A sa arvad, et oskas ise ka. A mis sa arvad, miks see tädi ei aidanud? • V: Ta ei tahtnud vist. • K:Vist jah. • Nonii, mis siin valesti tehti? • V:Et nagu üks nagu midagi ütles, mingi suvaline inimene, lihtsalt, mis kell on. Et ta küsis lihtsalt, mis kell on. Et nagu vabandada, seda ta ei ütlendki • K:Ahah. Mis sa arvad, miks ta ei tahtnud öelda? • V: Sellepärast et ta seal mõtles, et mingi suvaline inimene ja pole pole üldse lahke, et ta ei tahtnud talle ütelda.

  7. Anoverviewofqualitativeanaysis: fourmaincategoriesofstrategies • Understandingthecharacteristicsoflanguage • Discoveringregulatities • Comprehendingthemeaningoftextoraction • Reflection Dimensionstodifferentiatetheapproachestoqualitativeanalysis: Lessstructured-------Morestructured Interpretivist------Procedural Inductive-------Deductive

  8. Basic procedurescommontodifferentapproachesofqualitativedataanalysis: 1) categorisation Helpsyou: - Comprehendand manage yourdata; - Integraterelateddatadrawnfromdifferenttranscripts and notes; - Identifykeythemesorpatternsfromdataforfurtherexploration; - Developand/or test theoriesbased on theseapparentpatterns and relatioships; - Drawand verifyconclusions

  9. Categories: • maybederivedfromthesedataorfromyourtheoreticalframework • Haveto „fit“ withwhatyouhaverevealed – withdata • Codes/ labels, giving a structureforthedata • Identificationofthecategories -> purposeofyourresearch • itispossibletointerpretethesamequalitativedataverydifferently • Internalaspectofcategory– meaningfulinrelationtothedata • Externalaspectofcategory– meaningfulinrelationtoothercategories

  10. 2) „Unitising“ data - unit - chunkorbitoftextualdatathatfitsthecategory and carriesdiscretemeaning 3) Recognisingrelationships and developingcategories • searchforkeythemes/patterns /relationships • reviseyourcategories • keep anup-to-datedefinitionof all thecategories

  11. 4) Developing and testinghypothesesorpropositions • testingrelationshipsbetweenvariables • seekingalternativeexplanations/ negativeexamples • consideringpossibleinterveningvariables

  12. Analyticalaids: a recordofadditionalcontextualinformation • Summaries – aftereverydatacollectionset-> a summaryofthekeypointsthathavearised; thinkon alternativeideastoexploreyourquestion; identifyapparentrelationshipsbetweenthemes -> checktheirvalidity; contextualnotes – setting, changes, personsetc. • Self-memos– torecordideasaboutanyaspectofyourresearch. Omittingtorecordanidea -> itwillbelost – itisproved! • Researcher’sdiary- recordingideas -> youcanlaterfollowthedevelopmentofthembecauseofthechoronogicalform

  13. Approachestoqualitativeanalysis • Deductive– using a theoreticalordescriptiveframework - useofexistingtheorytoformulateresearchquestion-> theoreticalpropositionsmaydevise a frameworktoorganise/ directthedataanalysis. • Advantage– link yourresearchintotheexistingbodyofknowledgeinyoursubjectarea • Inductive – exploringwithout a predeterminedtheoreticalordescriptiveframework -to start collectingdata/ exploringthem-> findingthemestoconcentrate on. • Analysethedataduringcollectingit, developinga conceptualframeworktoguidethesubsequentwork Inpractice-> combiningtheelementsfrombothapproachesas at certainpointsyoumay need todevelopsometheoreticalpositionto test itsapplicability; and at some moment younoticethatthetheoreticalframeworkyouchooseddoesnotyielda goodanswertoyourresearchquestion

  14. Deductively-basedanalyticalprocedures • Patternmatching - predictinga patternofoutcomesbased on theoreticalpropositionstoexplainwhatyouexpecttofind. Twovariations • Explanationbuilding – anattempttobuildanexplanationwhilecollectingdata and analysingthem. processofexplanationbuilding- iterative

  15. Inductively-basedanalyticalprocedures Reasonsforadoptinganinductiveapproachfortheanalysisofdata: • need foranexploratoryprojectseekingtogenerate a directionforfurtherwork • thescopeofyourresearch-> constrainedbytheoreticalpropositionsnotreflectingparticipant’sviews/ experience. Theuseofinductiveapproachshouldallow a good „fit“ betweenthetheoryyoudevelop and thesocialrealityoftheparticipants • thetheorymaybeusedtosuggestsubsequentactiontobetakenbecauseitisspecificallyderivedfromtheevents and circumstancesofthesettinginwhichtheresearchwasconducted YoushouldNOTUSEinductiveapproachtoavoid a properlevelofpreparation!

  16. Datadisplay and analysis • summariseand simplifythedata; selectivelyfocus on some parts ofit; theaim istotransform and condensethedata • organiseand assembleyourreduced and selecteddataintosomediagrammaticorvisualdisplays (matrixornetwork);recognizingtherelationships and patterns/ drawingconclusions and verifyingtheseiseasierbytheuseofdatadisplays

  17. Templateanalysis • list of thecodesorcategoriesthatrepresentthemesrevealedfromthedata. • Thecodeswillbepredetermined and thenamended/ addedifthedatarequiresit • Dataare coded and analysedtoidentify and explorethemes, patterns and relationships. • codesand categoriescanbeshownhierarchically • Thecodes at differentlevelofanalysismaychangetheirpositionduringtheprocess • What’sthepointof all this? • …analyticaltechniquethroughwhichtodeviseaninitialconceptualframeworkthatwillrepresent and explorekeythemes and relationshipsinthedata; helpyoutoidentifynew, emergentissuesthatarisethroughtheprocessofdatacollectionand analysis

  18. Analyticinduction …inductiveversionoftheexplanation-buildingprocedure – „intensiveexaminationof a strategicallyselected number ofcases so astoempiricallyestablishthecausesof a specificphenomenon“.

  19. Groundedtheory …tobuildanexplanationortogenerate a theoryaroundthecentralthemethatemergesfromyourdata. Theprocessmaybemoreorlessstructured and systematic. There are differentstagesofgroundedtheoryprocedures: • Opencoding– thedatawillbedisaggregatedintoconceptualunits and providedwith a label. Inthatwayyoumayfind a multitudeoflabels, thatyou need toplaceintobroader, relatedgroupingsorcategories. Thiswillproduce a moremanageable and focuseddataset • Axialcoding– processof looking forrelationshipsbetweenthecategoriesofdatathathaveemergedfromopencoding. Asrelationshipsbetweencategories are recognised, they are re-arrangedinto a hierarchicalform, withtheemergenceofsubcategories. The aim istoexplore and explainthephenomenonbyidentifyingwhatishappening and why; tofindoutwhatenvironmentalfactorsaffectthis; howitisbeingmanagedwithinthecontextbeingexamined, and whattheoutcomes are oftheactionthathasbeentaken. • Selectivecoding– duringdatacollection, itislikelythatyouwillfindtheprincipalcategoriesand relatedsubcategories – corecategorieswillbebaseofyourgroundedtheory

  20. Quantifyingqualitativedata • tocountthefrequencyofcertainevents, particularreasonsthathavebeengiven, orinrelationtospecificreferencesto a phenomenon • frequenciescanbedisplayedas a tableordiagram • canbeproducedusingCAQDASprograms; exportedtostatisticalanalysissoftware • consideredasmethodoflimitedvalue -> donotdemonstratethenature and valueofyourqualitativedata, being a simplifiedformofit

More Related