670 likes | 935 Views
Affective Computing and Intelligent Interaction. Ma. Mercedes T. Rodrigo Ateneo Laboratory for the Learning Sciences Department of Information Systems and Computer Science Ateneo de Manila Univeristy. Affective computing.
E N D
Affective Computing and Intelligent Interaction Ma. Mercedes T. Rodrigo Ateneo Laboratory for the Learning Sciences Department of Information Systems and Computer Science Ateneo de Manila Univeristy
Affective computing Computing that relates to, arises from or deliberately influences emotion - Picard, 1997, Affective Computing
Affective computing • Emotion recognition • Emotion expression • Intelligent response to emotion
Significance: Towards more humane interfaces How can we enable computers to better serve people’s needs--adapting to you, vs. treating you like some fictionalized ideal user, and recognizing that humans are powerfully influenced by emotion, even when they are not showing any emotion? - Picard, 2003
Aplusix, Scatterplot, Ecolab, BlueJ, etc. Observation Logs Student Interaction Logs Sensor data • Interventions • Intelligent agents • Improved error messages • Analysis • Affect detectors • Behavior detectors • Novice programmer errors
Aplusix, Scatterplot, Ecolab, BlueJ, etc. Observation Logs Student Interaction Logs Sensor data • Interventions • Intelligent agents • Improved error messages • Analysis • Affect detectors • Behavior detectors • Novice programmer errors
Aplusix, Scatterplot, Ecolab, BlueJ, etc. Observation Logs Student Interaction Logs Sensor data • Interventions • Intelligent agents • Improved error messages • Analysis • Affect detectors • Behavior detectors • Novice programmer errors
Sample Log: Brainfingers [Header V2035] 7/31/2009 7:49:05 PM UserFile = C:\Nia Data\\__20090731194905.usr [Data] Sample,Event,GlanceMagJs,GlanceDirJs,A1Js,A2Js,A3Js,B1Js,B2Js,B3Js,MuscleJs 1,0,0.1,0.065,0.0195,0.20775,-1.165867E-07,0.5815,0.5311,0.6048,0.6782,0.7665,0.7074,0 1,0,-0.029,-0.122,0.021,0.2056,-1.165867E-07,0.5774,0.5251,0.5892,0.6723,0.7598,0.7125,0 1,0,0.015,-0.167,0.0205,0.203625,-1.165867E-07,0.5743,0.5187,0.5737,0.6683,0.7534,0.7157,0 1,0,-0.0595,-0.1555,0.0205,0.20165,-1.165867E-07,0.573,0.5118,0.5596,0.6656,0.7468,0.7159,0 1,0,-0.285,-0.163,0.0205,0.199625,-1.165867E-07,0.5733,0.5043,0.5477,0.6622,0.7398,0.7168,0 1,0,-0.3665,-0.206,0.022,0.197625,-1.165867E-07,0.5745,0.4966,0.5371,0.6567,0.7321,0.7221,0 1,0,-0.125,-0.158,0.0225,0.195675,-1.165867E-07,0.5772,0.4885,0.5268,0.6483,0.7242,0.7262,0
Aplusix, Scatterplot, Ecolab, BlueJ, etc. Observation Logs Student Interaction Logs Sensor data • Interventions • Intelligent agents • Improved error messages • Analysis • Affect detectors • Behavior detectors • Novice programmer errors
Sample Log: Aplusix %;ACTIONS;#Date=1/16/2007#Heure=14:57:59;#TypeProbleme=TpbDevelopper 0;0.0;structure;();0;();();();();();(); 1;0.0;enonce;();0;-7x(7x{@^[2]}-7x+4);();(devant);rien;;N1; 2;5.1;placerCurseur;();0;-7x(7x{@^[2]}-7x+4);();(0 2 derriere);rien;;N1; 3;0.8;dupliquer;();1;-7x(7x{@^[2]}-7x+4);();(0 2 derriere);rien;V1;N1; 4;1.9;selection;();1;-7x(7x{@^[2]}-7x+4);();rien;();V1;N1; 5;5.3;-;();1;7x(7x{@^[2]}-7x+4);();rien;();V0;N0; 6;1.5;BackSpace;();1;?;();(dedans);rien;V-;N-; 7;2.0;-;();1;-?;();(0 dedans);rien;V-;N-; 8;3.7;4;();1;-4;();(0 0 derriere);rien;V0;S0; 9;0.2;9;();1;-49;();(0 1 derriere);rien;V0;S0; 10;2.7;x;();1;-49x;();(0 1 derriere);rien;V0;S0; 11;1.3;{@^[?]};();1;-49x{@^[?]};();(0 1 1 dedans);rien;V-;N-;
Sample Log: Ecolab New Activity Toolbar Button Click 0 6 Activity 1 6 Activity Chosen: Food 4 6 Suggested Help 0 6 Suggested Challenge 1 6 Challenge Accepted 1 8 View Web change 13 View Web change 14 View Web change 14 Action Show 19
Sample Log: Scatterplot Tutor *000:03:781 READY . *000:59:503 APPLY-ACTION WINDOW; ALGEBRA-2-TRANSLATOR::VARIABLE-TYPE-MODEL, CONTEXT; SPLOT-DB-C-0-10-0-10, SELECTIONS; (|var-1val-1|), ACTION; SUBSTITUTE-TEXT-INTO-BLANK, INPUT; ("Numerical"), . *000:59:503 UPDATE-P-KNOW META; META-VALUING-NUM-FEATURES, PRODUCTION; (CHOOSE-VAR-TYPE-NUM MIDSCH-VARIABLE-TYPING), SUCCESS?; T, P-KNOW; 0.33333333333333326, ..
Aplusix, Scatterplot, Ecolab, BlueJ, etc. Observation Logs Student Interaction Logs Sensor data • Interventions • Intelligent agents • Improved error messages • Analysis • Affect detectors • Behavior detectors • Novice programmer errors
consolidation Methods analysis
analysis Methods
Others • Neutrality • Surprise
Others • Off-task, conversation • Inactive • Gaming the system
Aplusix, Scatterplot, Ecolab, BlueJ, etc. Observation Logs Student Interaction Logs Sensor data • Interventions • Intelligent agents • Improved error messages • Analysis • Affect detectors • Behavior detectors • Novice programmer errors
Talk to me %;ACTIONS;#Date=1/16/2007#Heure=14:57:59;#TypeProbleme=TpbDevelopper 0;0.0;structure;();0;();();();();();(); 1;0.0;enonce;();0;-7x(7x{@^[2]}-7x+4);();(devant);rien;;N1; 2;5.1;placerCurseur;();0;-7x(7x{@^[2]}-7x+4);();(0 2 derriere);rien;;N1; 3;0.8;dupliquer;();1;-7x(7x{@^[2]}-7x+4);();(0 2 derriere);rien;V1;N1; 4;1.9;selection;();1;-7x(7x{@^[2]}-7x+4);();rien;();V1;N1; 5;5.3;-;();1;7x(7x{@^[2]}-7x+4);();rien;();V0;N0; 6;1.5;BackSpace;();1;?;();(dedans);rien;V-;N-; 7;2.0;-;();1;-?;();(0 dedans);rien;V-;N-; 8;3.7;4;();1;-4;();(0 0 derriere);rien;V0;S0; 9;0.2;9;();1;-49;();(0 1 derriere);rien;V0;S0; 10;2.7;x;();1;-49x;();(0 1 derriere);rien;V0;S0; 11;1.3;{@^[?]};();1;-49x{@^[?]};();(0 1 1 dedans);rien;V-;N-;
I’m not a math genius but I’m pretty sure that 8x2-2x+6-(-5x2+8x+3) != christine+cyril=abigail
Analysis methods • Clean the data • Define the different features • Distill new features • Define desired range of values • Select an appropriate statistical test or data mining algorithm • Validate the findings