260 likes | 382 Views
Natural Multi-Arrival Datuming of CDP Data to VSP Data with VSP Green’s Function. Xiang Xiao UTAM, Univ. of Utah Feb 2, 2006. This is not an Outline…. But an content !. Motivation p. 3~5 Theory p. 6~12 Numerical Tests p. 13~24 Conclusion p. 25. Motivation.
E N D
Natural Multi-Arrival Datumingof CDP Data to VSP Data with VSP Green’s Function Xiang Xiao UTAM, Univ. of Utah Feb 2, 2006
This is not an Outline… But an content ! • Motivation p. 3~5 • Theory p. 6~12 • Numerical Tests p. 13~24 • Conclusion p. 25 Motivation Theory Numerical Tests Conclusion
I. Why we need more VSP? CDPVSP • Surface related statics • Twice Once Seabed • Overburden velocity error • Twice Once • Raypath Salt • Longer Shorter • Attenuation • More Less • Frequency Target • Lower Higher • Resolution • Lower Higher Motivation Theory Numerical Tests Conclusion
How to naturally get more VSP? 3DCDP 3D VSP Low folds Naturally datuming ! High folds ! CDP + VSP RVSP! 3D RVSP Motivation Theory Numerical Tests Conclusion
CDP, VSP Well log High folds ! Salt CDP + VSP RVSP! 3D RVSP Use it, or lost it… Better Geologic interpretation ! Better image under the salt ! Motivation Theory Numerical Tests Conclusion
VSP CDP CDP VSP RVSP S2 ∂G(B|A)* ∂ G(x|A) A G(B|A)*]dA G(x|A)- x G(B|x) ~ [ ~ ∂nx ∂nx S2 S1 B II. How to Naturally Redatum ? 1. Start point---Green theorem 2. Problem: CDP + VSP RVSP Green’s Theorem VSP VSP VSP VSP CDP ∂G(A|B) ∂ G(B|x) G(A|B)]dB G(B|x) - G(A|x) = [ ∂nx ∂nx S1 Replaced by G(B|A)*, switch other terms Motivation Theory Numerical Tests Conclusion
VSP CDP CDP VSP CDP VSP RVSP ∂G(B|A)* ∂ G(x|A) G(x|A) G(B|A)*]dA G(B|A)* G(x|A)- G(B|x) ~ [ ~ ∂nx dA ∂nx S2 CDP VSP RVSP d(B,x) ~ G(x|A) G(B|A) II. Hard to understand ? S2 A x RVSP G(B|x) ~ ~ B S2 S1 It’s Crosscorrelation Datuming ! ~ Motivation Theory Numerical Tests Conclusion
VSP CDP CDP VSP RVSP ∂G(B|A)* ∂ G(x|A) G(B|A)*]dA G(x|A)- G(B|x) ~ [ ~ ∂nx Forward Propagate Backward Propagate ∂nx ( 2+K2)G(B|A)=d(B-A) S2 ReceiverB ReceiverB Source A Source X II. Let’s understand this… Problem: CDP + VSP RVSP G(B|A)* is the acausal Green’s function S2 A x G(B|x) is the causal Green’s function B S1 Motivation Theory Numerical Tests Conclusion
VSP CDP CDP VSP RVSP ∂G(B|A)* ∂ G(x|A) G(B|A)*]dA G(x|A)- G(B|x) ~ [ ~ ∂nx ∂nx S2 II. Let’s understand this… Problem: CDP + VSP RVSP Green’s Theorem Back- For- X A B S2 A CDP VSP x For- X B RVSP B S1 Motivation Theory Numerical Tests Conclusion
DipoleFormula VSP CDP CDP VSP RVSP S2 ∂G(B|A)* ∂ G(x|A) A G(B|A)*]dA G(x|A)- x G(x|B) ~ [ ~ ∂nx ∂nx S2 B Solution CDP + VSP RVSP Multi-arrival Monopole Datuming CDP VSP cosq RVSP i k G(B|A)* G(x|A) G(x|B) ~ dA ~ S1 G(B|A) G(B|A)* + e VSP VSP Deconvolution Datuming ! Motivation Theory Numerical Tests Conclusion
DipoleFormula VSP CDP CDP VSP RVSP ∂G(B|A)* ∂ G(x|A) G(B|A)*]dA G(x|A) + G(x|B) ~ [ ~ ∂nx ∂nx S2 Solution CDP + VSP RVSP S2 A q x Shortest-arrival Monopole Approximation q VSP B CDP -iwtxB RVSP e S1 cosq i k G(x|A) G(x|B) ~ [ dA ] ~ S2 4π Motivation Theory Numerical Tests Conclusion
What is the benefit ? CDP + VSP RVSP • Sources are closer to the target; • Higher fold virtual RVSP data are obtained; • No velocity model is needed; • Multi-arrival are considered; Salt Motivation Theory Numerical Tests Conclusion
Outline Comes Back… • Motivation • Theory • Numerical Tests • SEG/EAGE Salt Model • Field Data Examples • Conclusion Motivation Theory Numerical Tests Conclusion
P-wave velocity model Velocity (m/s) 0 4500 Depth (m) 15700 1500 -7850 Offset (m) 7850 A Salt Model ! Motivation Theory Numerical Tests Conclusion
P-wave velocity model Velocity (m/s) 0 4500 Depth (m) 15700 1500 -7850 Offset (m) 7850 CDP Data Geometry… CDP Motivation Theory Numerical Tests Conclusion
Synthetic CDP CSG 0 Time (s) 6 -2000 2000 Offset (m) Data Time (s) Motivation Theory Numerical Tests Conclusion
P-wave velocity model Velocity (m/s) 0 4500 Depth (m) 15700 1500 -7850 Offset (m) 7850 VSP Geometry… Motivation Theory Numerical Tests Conclusion
Synthetic CDP CSG Synthetic VSP CRG 0 0 Time (s) 6 6 -7850 7850 -7850 7850 Offset (m) Offset (m) Data Time (s) Motivation Theory Numerical Tests Conclusion
Synthetic RVSP CSG 0 0 Time (s) Time (s) 6 6 -7850 7850 Offset (m) noise Which is better? Multi-arrival datuming vs. Shortest-arrival datuming 0 Time (s) noise 6 -7850 7850 Offset (m)
How about the waveform? Traces comparisons Direct waves are cut Shortest-arrival datuming poor data folds multi-arrival datuming Normalized Amplitude Zoom area 6 3 Time (s) Motivation Theory Numerical Tests Conclusion
Multi-arrival datuming wins! Zoom View of Traces Shortest-arrival datuming Normalized Amplitude multi-arrival datuming 3 Time (s) 5.5 Motivation Theory Numerical Tests Conclusion
P-wave velocity model Velocity (m/s) 0 4500 Depth (m) 15700 1500 -7850 Offset (m) 7850 Another Datuming Results Motivation Theory Numerical Tests Conclusion
Shortest-arrival datuming Synthetic RVSP CSG 0 Time (s) 6 Multi-arrival datuming Traces comparisons 0 Normalized Amplitude Time (s) 6 2 6 -2000 2000 Time (s) Offset (m) noise
Multi-arrival still wins ! Traces comparisons Direct waves are cut Shortest-arrival datuming Normalized Amplitude multi-arrival datuming poor data folds 2.5 6 Time (s)
IV. Conclusion • Natural datuming, no velocity model is needed ! • Higher fold virtual RVSP data are obtained ! • Multi-arrival datuming wins over shortes-arrival datuming ! • Better agreement are obtained ! Motivation Theory Numerical Tests Conclusion
Thank you! • Thank the sponsor of the 2005 UTAM consortium for their support.