110 likes | 325 Views
Path Integral Quantization. 前回の Summary. path Integral. generating functional. Gauge Theory. for gauge field & spinor field. Assume Lorentz inv., locality, superficial renormalizability & . local gauge symmetry. with Lie group G. Lie algebra g. gauge transformation.
E N D
Path Integral Quantization 前回のSummary path Integral generating functional
Gauge Theory for gauge field & spinor field Assume Lorentz inv., locality, superficial renormalizability & local gauge symmetry with Lie group G. Lie algebra g. gauge transformation b i:parameter, depends on xm Xi: generator of G f ijk: structure constants of G T i: representation of Xi on y Lagrangian field strength covariant derivative
SU(3)=group of complex 3×3 matrices U withUU†=1 (unitary) & detU = 1 (special) example generator li Gell-mann matrices f ijkは完全反対称 commutators irreducible representations are specified by two integers
Path intdegral quantization of gauge theories としてみる =0 ∂mKmn =-∂n∂2+∂2∂n generating functional ∂m is inappropriate ∵ does not exist. ∂m = = ∂l 0 need gauge fixing 矛盾 (K-1)mn we choose the gauge with does not exist.
gauge fixing need gauge fixing we choose the gauge with
gauge fixing xi = = yj
gauge fixing = (gauge不変性より) i Gm = 無限大の定数 物理はBi によらない 無限大の定数 =
Grassman number Faddeev Popov ghost
fermionも加える Lagrangian
fermionも加える Lagrangian