290 likes | 468 Views
MULTI-OMNIDIRECTIONAL CAMERAS FOR AMBIENT INTELLIGENCE. Bar ış Evrim Demiröz, Albert Ali Salah, Lale Akarun. 19.04.2012 Sinyal İşleme ve İletişim Uygulamaları Kurultayı. Overview. Dataset collected Baseline tracker Released Videos Annotations Performance Measurer Camera calibrations
E N D
MULTI-OMNIDIRECTIONALCAMERAS FOR AMBIENTINTELLIGENCE Barış Evrim Demiröz, Albert Ali Salah, Lale Akarun 19.04.2012 Sinyal İşleme ve İletişim Uygulamaları Kurultayı
Overview • Dataset collected • Baseline tracker • Released • Videos • Annotations • Performance Measurer • Camera calibrations • Tracker source codes Multi-Omnidirectional Cameras for Ambient Intelligence
Omnidirectional Camera • Omnidirectional camera ~ Large FOV Catadioptric(lens+mirror) PTZ Dioptric (lens) Multiple Images Photos: Jonas Pfeil, Wikimedia commons and `B. Micusik and T. Pajdla, "Estimation of omnidirectional camera model from epipolar geometry" 2003 IEEE Computer Society Conference on Computer Vision and Pattern Recognition, 2003. Proceedings., pp. I-485-I-490, 2003.` Multi-Omnidirectional Cameras for Ambient Intelligence
Catadioptric/Dioptric cameras • Pros/cons • 1 image • Low resolution near boundaries • Ideal for small spaces, assisted living, surveillance Title of the presentation
Dataset Multi-Omnidirectional Cameras for Ambient Intelligence
Sample from dataset Multi-Omnidirectional Cameras for Ambient Intelligence
The room Windows Table 1 SideCam Table 2 Chair 1 Chair 2 TopCam Sink Door Multi-Omnidirectional Cameras for Ambient Intelligence
Cameras used • Oncam IPC, IPT • 5 Megapixel • No moving parts Multi-Omnidirectional Cameras for Ambient Intelligence
Scenarios performed • Scenario #1 • Single person • 6 Actions • Sitting • Walking • Drinking • Washing hands • Fainting • Opening/Closing door • 5 performers (10 videos total) Multi-Omnidirectional Cameras for Ambient Intelligence
Scenarios performed • Scenario #2 • 3 people • 5 Actions • Sitting • Walking • Standing • Handshaking • Interested in object • 5 performers (36 videos intotal by exchanging roles) Multi-Omnidirectional Cameras for Ambient Intelligence
Video properties • 640x480 frame size • Bandwidth limitation • ~8 fps • MJPEG format Multi-Omnidirectional Cameras for Ambient Intelligence
Annotations C • Annotation tool usedvatic* • Annotations • Bounding box of subject • State (action) of subject A B * C. Vondrick, D. Ramanan, and D. Patterson, “Efficiently Scaling Up Video Annotation with Crowdsourced Marketplaces,” ECCV 2010, pp. 610–623, 2010. Multi-Omnidirectional Cameras for Ambient Intelligence
Occlusion • Pseudo occlusion: Multi-Omnidirectional Cameras for Ambient Intelligence
Occlusion Multi-Omnidirectional Cameras for Ambient Intelligence
How to evaluate tracker performance? • Multiple Object Tracking Precision/AccuracyMOTP and MOTA* o: object h: hypothesis d: distance btw o: and h c: match count m: misses fp: false positives mme: mismatches t: frame no k: video no i: object no * K. Bernardin and R. Stiefelhagen, “Evaluating Multiple Object Tracking Performance: The CLEAR MOT Metrics,” EURASIP Journal on Image and Video Processing, vol. 2008, pp. 1–10, 2008. Multi-Omnidirectional Cameras for Ambient Intelligence
Baseline tracker Multi-Omnidirectional Cameras for Ambient Intelligence
Outline System Components Multi-Omnidirectional Cameras for Ambient Intelligence
Background/Foreground Segmentation • Mixture of Gaussians • Shadow removal Multi-Omnidirectional Cameras for Ambient Intelligence
Threshold the areas filter small contours Blob formation • Morphological close • maintain connectivity × × Multi-Omnidirectional Cameras for Ambient Intelligence
FAST*corner detection Feature Point Detection andDescriptor Extraction • BRIEF features • extended for opponent color space • *Features from Accelerated Segment Test Multi-Omnidirectional Cameras for Ambient Intelligence
Blob Matching and Tracking Frame Blob Blob Blob … Keypoint Keypoint Keypoint Keypoint Keypoint Keypoint … … … Keypoint Keypoint Keypoint Multi-Omnidirectional Cameras for Ambient Intelligence
Blob Matching and Tracking Previous n frames Frame NEW FRAME Frame Frame … Blob Blob Blob Blob Blob Blob Blob Blob Blob Blob Blob Blob … … … … Keypoint Keypoint Keypoint Keypoint Keypoint Keypoint Keypoint Keypoint Keypoint Keypoint Keypoint Keypoint Keypoint Keypoint Keypoint Keypoint Keypoint Keypoint Keypoint Keypoint Keypoint Keypoint Keypoint Keypoint … … … … … … … … … … … … Keypoint Keypoint Keypoint Keypoint Keypoint Keypoint Keypoint Keypoint Keypoint Keypoint Keypoint Keypoint Multi-Omnidirectional Cameras for Ambient Intelligence
Blob Matching and Tracking • Optimal assignment problem • Hungarian algorithm Multi-Omnidirectional Cameras for Ambient Intelligence
Tracking result example Multi-Omnidirectional Cameras for Ambient Intelligence
Results Multi-Omnidirectional Cameras for Ambient Intelligence
Results Multi-Omnidirectional Cameras for Ambient Intelligence
Results Multi-Omnidirectional Cameras for Ambient Intelligence
Future directions • Utilizing information from multiple cameras • Handling occlusions • Undistorted keypoints • Evaluation protocol for action recognition Multi-Omnidirectional Cameras for Ambient Intelligence