120 likes | 300 Views
Design Point Trade Studies. J.H. Schultz M.I.T. Plasma Science and Fusion Center NSO PAC 2 Meeting M.I.T. Plasma Science and Fusion Center January 17-18, 2001. Progress in Design Point Studies. 1. IPB98(y.2) Scaling - reduced 2.0 m Wedged FIRE from Q=10 to Q=5 at 10 T
E N D
Design Point Trade Studies • J.H. Schultz • M.I.T. Plasma Science and Fusion Center • NSO PAC 2 Meeting • M.I.T. Plasma Science and Fusion Center • January 17-18, 2001
Progress in Design Point Studies 1. IPB98(y.2) Scaling - reduced 2.0 m Wedged FIRE from Q=10 to Q=5 at 10 T - parametric study explores bucked/wedged option for cost/mission improvements 2. Equalization of TF/CS "burn times" - optimization of TF/CS interface 3. Scan of A, Bt for "Fixed Mission" - Margin=2 and Margin=1 4. Detailed Cost vs. Ro Sensitivities
Double Optimization Method (1) TF/OH interface optimization tburn,TF = tburn,OH (TF/OH interface optimum for fixed Ro Subtract 3 s from TF flattop for heating e.g. 24.5 s flattop = 24.5 s I flattop = 3 s heat + 21.5 s burn No scaling of theat with plasma parameters (2) Minimum Ro for "Mission Margin" Mission: Long-pulse a-dominated plasmas Margin=2: Q>=10; tflattop/max(tE, tp*, tJ) >= 2 Margin=1: Q>=5; tflattop/max(tE, tp*, tJ) >= 1
Double Optimization Method-II Instead of fixing Ro and varying A Vary Ro and A, while holding Margin=1,2 Margin=min(Pa/Pheat, tflattop/tJ) 3 Variations: 1) Minimum Ro(fixed A,B)with M=min(Pa/Pheat, tflattop/tJ) 2) Minimum Ro(fixed A, Bvariable @ low A); M=Const 3) Minimum Ro(fixed A,B, f(q) @ high B); M=Const
Dimensionless Margins > 2 vs. A Alpha margin=Time margin=2 at optimum A=2.0/0.525 Rapid rise in time margin and heating margin off optimum A
Reduced Mission: M=1, Q=5,tburn/tJ=1 R o,min = 1.59 m at Bt=11.5 T & A=(2.0/0.525)=3.8095 Bt=11.5 T for A=3.8 Bt=10.5 T for A=3.6 R(low A) nonlinear, but not pathological
Ro (m) vs. Bt: M=2, Q=10, t/tauJ=2 Ro (m) grows pathologically at high Bt and qlim=3.1 Well-behaved if M=2,Q=10,t/tJ=2 (qlim > 3.1 at Bt>Bt,opt) Romin=1.86 m, A=3.8 Romin(A=3.6) = 1.925 m
Ro (m) vs. A; M=2, Q=10,t/tauJ=2; Bt=10.5, 11.5 T, qlim=3.177 Romin = 1.86 m@ Bt=11.5, A=3.8 Ro (m) pathological at low A Cured by lowering Bt; Q=10, M=2 (no effect on Romin)
Comparison of "Mission Margin" =1, 2 Curves M2:Minimum Cost =$1.06 B @ Ro= 1.86 m, A=3.8, Bt=11.5 T - M2 < $1 B, if phase auxiliary power M1:Minimum Cost = $0.92 B @ Ro=1.59 m, A=3.8, Bt=11.5 T
Cost (M$) vs. Ro (m); Subsystem Sensitivity Vary Ro; Bt=11.5 T, A=3.8, qL=3.1, not fixed mission $/Ro Sensitivity = 1.01 $/Ro: Paux, I&C = 0 Magnets=1.64 Basic Machine=1.25 Buildings=1.14
Exciting Conclusions Ro can be reduced to 1.86 m and retain M=2 mission Mission reduction x 2 allows reduction of Ro to 1.59 m (1st order!) Margin=2 mission requires lowering B @ A<3.5 or q @ B>13 T d$/dR = 1: Machine sensitivity ~ 1.25 + nearly fixed costs Recommendation: Reduce Ro to 1.87 m, Day 1 RF = 10 MW Achieve all cost/mission objectives: Q=10, tflat/tJ=2, Cost<$1 B Historic first: A noncatastrophic reduction in NSO Ro