1 / 15

Chemical aspects between water and minerals in view of building geothermal power plants

Chemical aspects between water and minerals in view of building geothermal power plants. A short introduction into mineralogy from Martin Weber Msc. chem., Switzerland. Analysis of thermal water from the richest mineral source in Switzerland. Place of the fountain: Baden (Switzerland)

evette
Download Presentation

Chemical aspects between water and minerals in view of building geothermal power plants

An Image/Link below is provided (as is) to download presentation Download Policy: Content on the Website is provided to you AS IS for your information and personal use and may not be sold / licensed / shared on other websites without getting consent from its author. Content is provided to you AS IS for your information and personal use only. Download presentation by click this link. While downloading, if for some reason you are not able to download a presentation, the publisher may have deleted the file from their server. During download, if you can't get a presentation, the file might be deleted by the publisher.

E N D

Presentation Transcript


  1. Chemical aspects between water and minerals in view of building geothermal power plants A short introduction into mineralogy from Martin Weber Msc. chem., Switzerland

  2. Analysis of thermal waterfromtherichestmineralsource in Switzerland • Place of the fountain: Baden (Switzerland) • Temperature: 46.5°C • pH-data: 6.43 • Total mineralisation: 435 mg/L • Boric and silicic acid: 71 mg/L • Solved gas: 292 mg/L

  3. Analysis of thermal waterfromtherichestmineralsource in Switzerland Kations mg/L • Ammonia 0.78 • Lithium 4.8 • Sodium 720 • Potassium 63 • Magnesia 99 • Calcium 503 • Strontium 6.2 • Iron 0.013 • Manganese 0.016 • Copper <0.005 • Zinc <0.01 • Lead 0.002 • Aluminium 0.018 • Total 1397 Anions mg/L • Fluorine 3.1 • Chlorine 1185 • Bromine 2.5 • Iodine 0.009 • Nitrate <0.5 • Hydrogen- carbonate 487 • Sulfate 1375 • Hydrogen- phosphate 0.05 • Hydrogen- arsenate 0.1 • Molybdate <0.005 • Total 3053

  4. Solid precipitationsfrommineralwatersomefrequentexamples Solvationproduct • Limestone CaCO3 4.7 x 10-9 • DolomitheMgCa(SO4)2 2.6 x 10-6 • Plaster CaSO4 2.4 x 10-5 • Strontianithe SrCO3 1.6 x 10-9 • Barythe BaSO4 1.5 x 10-9 • Silicates CauMgvAlw(SixOy)z • Borates NauCavMgw(BxOy)z

  5. Problems withprecipitatingmineralsfromwater • Formation of mineralic layers and coatings on pipes and heat exchangers. • Reduced heat transitions trough mineralic coatings and sedimentations. • Reduced water flow through the primary water cycle and risk of a transition from a laminar to a turbulent flow.

  6. Formation of limestone CaCO3 • Mineral watercontains Calcium (Ca2+) and Hydro-gencarbonateions (HCO3-). These ionsareeasily soluble andstay in a chemicalequilibriumwith CaCO3, whichisheavily soluble: Ca2+(aq) + 2 HCO3-(aq) CaCO3(s) + H2O + CO2 easily soluble heavily soluble In coldwatertheequilibriumis on theleftside, wherethe soluble particlesexist. Heat will changetheequilibriumfromthelefttotherightside, so theformationof limestone ispreferred.

  7. Formation of Silicates • Mineral watercontainsconsiderableamountsofsilicicacidH4SiO4. The rangeofconcentrationspreadsfrom 5 mg/Litreupto 75 mg/Litre. • Silicicacidismoderately soluble, but bysplitting off waterittendsto form higherpoly-silicates, whichareless soluble andprecipitateassolids: 2 H4SiO4 (aq)  H6Si2O7 (s) + H2O 3 H4SiO4 (aq)  H8Si3O10 (s) + 2 H2O 4 H4SiO4 (aq)  H10Si4O13 (s) + 3 H2O etc.

  8. Formation of Silicates • The anionof (monomeric) silicicacid SiO44-represents a tetrahedralgeometry. • Polysilicicacidsmaybeformedbyconnectingcorners, edgesor planes ofmonomeric, tetrahedralsilicatesasthefollowingpictureisshowingus: schematic structure

  9. Formation of Silicates group- silicate chain- silicate ring- silicate ortho- silicate monomer band- silicate ring- silicate

  10. Formation of Silicates • Connectingofcornersleadstotheformationofeithergroups, chains, bands, rings orlayers, connectingedgesor planes leadstotheformationofcagesfrompolymericsilicicacid: layer structure of polysilicate minerals like clay and mica [(Si2O5)2-]x

  11. Formation of Silicates Combinedwith different kationswecomeacrossthedifferent naturallyexistingsilicateswhichareknownby alternative names. Type ofsilicateformulaof Mineral- nameandformula theanionclassof a representativemineral monosilicates SiO44- OlivinesFayalit Fe2SiO4 groupsilicates Si2O76-Barysilit Pb3Si2O7 ring or cyclosilicates Si3O92- Beryll Al2Be3Si6O18 chainsilicates [SiO32-]xPyroxenesDiopsidCaMg[SiO3]2 band silicates [Si4O116-]xAmphibolesTremolit Ca2Mg5(OH)2[Si4O11]2 layersilicates [Si2O52-]x clays Kaolinit Al2(OH)4[Si2O5] Talcum Mg3(OH)2[Si2O5]2 Mica Biotit K{(Mn)3(OH)2[AlSi3O10]} Asbestos Serpentin Mg3(OH)4[Si2O5] cagesilicates [AlySi4-yO8y-]x Feldspars Orthoclas K[AlSi3O8] CeolithsMordenit Na2[Al2Si10O24] . 6 H2O Quartz SiO2

  12. Weathering decay of silicates • Products fromweatheringdecayofsilicatesare: • SiO2orsilicicacid H4SiO4 • Hydroxide ofaluminium Al(OH)3 • Clay minerals • Weatheringdecayoffeldspar: KAlSi3O8 + 4 H++ 4 H2O  K+ + Al3+ + 3 H4SiO4 • Reformation of Kaolinit (a claymineral) 2 KAlSi3O8 + 4 H++ 9 H2O  2 K+ + AlSi2O5(OH)4 + 4 H4SiO4

  13. Resistivityofweatheringdecayfrom different silicates Iland- silicates Chain- silicates Band- silicates Layer- silicates Cage- silicates Feldspars and Quartz SiO2 Olivins SiO44- Pyroxenes SiO32- Amphiboles Si4O116- Clay and Mica Si2O52- Resistivity of weathering decay increases

  14. Solutions forencounteringmineralicprecipitations on pipesandheatexchangers • Electrophoresis • Exchangeable heat exchangers • Filters for gelatinous polysilicic acids • Cyclone (centrifugal separation)

  15. Thankyouforyourattention!

More Related