400 likes | 566 Views
Haptics and Virtual Reality. Lecture 3: Sensors & Actuators. M. Zareinejad. Outline. # Sensors. Sensor types Sensor examples. – –. #Actuators. Actuator types Actuator examples. – –. The Haptic System. Human. Passive & Active joint. Sensor Applications. Eye tracking
E N D
Haptics and Virtual Reality Lecture 3: • Sensors & Actuators M. Zareinejad
Outline # Sensors Sensortypes Sensorexamples – – #Actuators Actuatortypes Actuatorexamples – –
TheHapticSystem Human
SensorApplications Eyetracking Headtracking Bodytracking Handtracking Mostimportantfortypicalhapticinterfaces –
Sensortypes Magnetic Optical Acoustic Inertial Mechanical Mostimportantfortypicalhapticinterfaces –
MechanicalTrackers Ground-basedlinkagesmostcommonlyused PositionSensors digital:opticalencoders analog:Hall-effect(magnetic) – –
OpticalEncoders Emitter Howdotheywork? Detector Afocusedbeamoflightaimedatamatched photodetectorisinterruptedperiodicallybyacoded patternonadisk Producesanumberofpulsesperrevolution(Lotsof pulses=highcost) – – Quantizationproblemsatlowspeeds Absolutevs.Incremental
OpticalEncoders Absolutevs. Incremental Resolution?
OpticalEncoders Phase-quadratureencoder 2channels,90°outofphase allowssensingofdirectionofrotation –
Hall-EffectSensors Howdotheywork? – Asmalltransversevoltageisgeneratedacrossa current-carryingconductorinthepresenceofa magneticfield (Discoverymadein 1879,butnotuseful untiltheadventof semiconductor technology.)
Hall-Effect Sensors Vh=Hallvoltage Rh=Hall coefficient RhIB t I=Current B=Magnetic fluxdensity t=Elementthickness Vh= Amountofvoltageoutputrelatedtothe strengthofmagneticfieldpassingthrough. Linearoversmallrangeofmotion Needtobecalibrated – Affectedbytemperature,othermagnetic objectsintheenvironments
Hall-Effect Sensors Vh=Hallvoltage Rh=Hall coefficient I=Current B=Magnetic fluxdensity t=Elementthickness RhIB t Vh= • The voltage varies sinusoidally with rotation angle Resolution?
Potentiometers Resolution?
Acoustic Tracker Speaker Microphone
Optical Tracker • Inside-Looking-Out • Outside-Looking-In
MeasuringVelocity Differentiateposition advantage:usesamesensoraspositionsensor disadvantage:getnoisesignal – – Alternative forencoders,measuretimebetweenticks –
Digitaldifferentiation P1-P2 t Manydifferentmethods SimpleExample: V= Average20readings=P1 Averagenext20readings=P2 wheretisthetheperiodoftheservoloop – – – Differentiation Increases noise
Time-between-ticks Time per ticks rather than ticks per time useaspecialchipthatmeasurestime betweenticks Especially good to do at slow speeds – Farespoorlyathighvelocities – p t v=
ActuatorTypes Electricmotors • DC(direct current) • Brushed • PM(permanent magnet) Pneumatic Actuators
PMDCbrushedmotors Howdothey work? Rotatingarmature withcoilwindings iscausedtorotate relativetoa permanentmagnet currentistransmittedthroughbrushesto armature,andisconstantlyswitchedsothatthe armaturemagneticfieldremainsfixed. – –
DCmotorterms Cogging Tendencyfortorqueoutputtorippleasthebrushes transferpower – Friction/damping Causedbybearingsandeddycurrents – Stalltorque Maxtorquedeliveredbymotorwhenoperated continuouslywithoutcooling –
MotorEquations Torqueconstant,KT T=KT I Dynamicequation dI dt V=L +RI+E
PneumaticActuators Howdotheywork? Compressedairpressureisusedtotransferenergy fromthepowersourcetohapticinterface. – Manydifferenttypes Concernsarefrictionandbandwidth
SomeTerms AD/DA analogtodigital digitaltoanalog – – Interruptroutine ServoLoop Servorate Usuallyneedstobe>500Hz –
D/AandA/D Convertsbetween voltagesandcounts Computerstores informationdigitally, andcommunicates withtheoutside worldusing+/-5V signals 101010101 LSB MSB
D/AandA/D Convertsvoltagestocountsandviceversa A12-bitcard: 212decimalnumbers(4096) – 2994 Decimal(base10): Binary(base2): 1 0 1 1 1 0 1 1 0 0 1 0 Hexadecimal(base16): 1 0 1 1 1 0 1 1 0 0 1 0 B B 2 = BB2