1 / 42

Accelerator R&D and Particle Physics at PSI

Accelerator R&D and Particle Physics at PSI. Lenny Rivkin, PSI & EPFL. Accelerator R&D in Switzerland and Particle Physics at PSI. High intensity protons LHC and its upgrades: high energy frontier PSI cyclotron: neutron and muon sources High intensity/precision frontier experiments

Download Presentation

Accelerator R&D and Particle Physics at PSI

An Image/Link below is provided (as is) to download presentation Download Policy: Content on the Website is provided to you AS IS for your information and personal use and may not be sold / licensed / shared on other websites without getting consent from its author. Content is provided to you AS IS for your information and personal use only. Download presentation by click this link. While downloading, if for some reason you are not able to download a presentation, the publisher may have deleted the file from their server. During download, if you can't get a presentation, the file might be deleted by the publisher.

E N D

Presentation Transcript


  1. Accelerator R&DandParticle Physics at PSI Lenny Rivkin, PSI & EPFL

  2. Accelerator R&D in Switzerland and Particle Physics at PSI • High intensity protons • LHC and its upgrades: high energy frontier • PSI cyclotron: neutron and muon sources • High intensity/precision frontier experiments • Advanced Light Sources and e+e- colliders • X-ray Free Electron Laser: PSI-XFEL • Small emittance optimisation in storage rings (SLS) Important synergies between CERN and PSI!

  3. LHC Upgrades • Currently 12 EPFL doctoral students • Some examples: • Beam beam interaction simulations (T. Pieloni) • Smaller beam size at the IP (R. de Maria) • Dipole first ‚D0‘ (G. Sterbini) • Injector chain upgrade, SPS intensity limit (B. Salvant) • … CERN Doctoral Program!

  4. Overview high power accelerators

  5. The proton accelerator

  6. Handling of high power proton beams • PSI now @ 2.2 mA (1.3 MW on target) • Permit for 2.4 mA, then for 2.6 mA LHC design: collimators @ 0.5 MW!

  7. High intensity/precision frontier • MEG (meg) • UCN, nEDM • FAST • MuSun • m Hydrogen Lamb shift

  8. g g W- m- e- m- e- nm ne LFV in SM and SUSY • While LFV is forbidden in SM, it is possible in SUSY ≈ 10-12 Current experimental limit: BR(m e g) < 10-11

  9. g g n m n n n m e e “Accidental” Background Background m e g g m  e nn m Annihilation in flight 180º e m  e nn • m→ e g signal very clean • Eg = Ee = 52.8 MeV • qge = 180º • e and g in time Good energy resolution Good spatial resolution Excellent timing resolution Good pile-up rejection

  10. Status of the MEG experiment • First engineering run end of 2007 • Careful detector calibration May-August 2008 • Physics data taking started September 2008 • Achieved in 2008: • 1013m in detector acceptance • No result yet because of “blind analysis” • Expect to improve the current limit of BR(meg) = 1.2 x 10-11 • Plan for 2009: Double statistics, improve detector efficiencies • Achieve BR(meg)  10-13 by2011/2012 1013m+ in acceptance cooling water problem accelerator service 2008

  11. High intensiry/precision frontier • MEG (meg) • UCN, nEDM • FAST • MuSun • m Hydrogen Lamb shift

  12. UCN Source at PSI UCN = Ultra Cold Neutrons Latest news: UCN tank delivered at PSI on September 4th, 2008 2m3vacuum UCN storage 30 liters, 5Ksolid D2 p-beam 1.2 MW1% duty cycle ucn.web.psi.ch 3.6 m2 D2O

  13. UCN Source at PSI UCN = Ultra Cold Neutrons 2m3vacuum UCN storage 30 liters, 5Ksolid D2 • Source commissioning starts in fall 2009 • Will deliver several 109 UCN every ~400-800 s • ~1000 cm-3 UCN in typical experiments • (today this is ~10 cm-3 at ILL Grenoble) p-beam 1.2 MW1% duty cycle ucn.web.psi.ch 3.6 m2 D2O

  14. + _ + _ Use UCN for an improved Neutron EDM SearchP, T CP Neutron EDM violates parity P and time reversal invariance T

  15. Neutron EDM SearchP, T CP Strategy: Experiment with UCN in vacuum and apparatus at ambient temperature. Use double UCN chamber, co-magnetometry and multiple external magnetometers. nedm.web.psi.ch • Present best limit: dn < 2.9 x 10-26 e cm • Sussex-RAL-ILL collaboration • C. A. Baker et al., PRL 97 (2006) 131801 • nEDM collaboration 15 groups, 50 people • Move from ILL to PSI March 2009 • Data taking at PSI 2010 – 2011 (Phase II)Sensitivity goal: 5x10-27ecm • New n2EDM operational 2011/12 • Operation of new n2EDM apparatus 2012 – 2015 (Phase III)Sensitivity goal: 5x10-28ecm

  16. PhysikalischTechnischeBundesanstalt, Berlin Laboratoire de Physique Corpusculaire, Caen Institute of Physics, JagiellonianUniversity, Cracow HenrykNiedwodniczanskiInst. for Nucl. Physics, Cracow Joint Institute of NuclearReasearch, Dubna Département de physique, Université de Fribourg, Fribourg Excellence Cluster Universe,Garching Institut Laue-Langevin, Grenoble Laboratoire de Physique Subatomique et de Cosmologie, Grenoble BiomagnetischesZentrum, Jena KatholiekeUniversiteit, Leuven Inst. fürKernchemie, Johannes-Gutenberg-Universität, Mainz Inst. fürPhysik, Johannes-Gutenberg-Universität, Mainz TechnischeUniversität, München Paul Scherrer Institut, Villigen M. Burghoff, S. Knappe-Grüneberg, T. Sander-Thoemmes, A. Schnabel, L. Trahms G. Ban, Th. Lefort, O. Naviliat-Cuncic,E. Pierre1,G. Rogel2 K. Bodek, St. Kistryn,M. Kuzniak1, J. Zejma A. Kozela N. Khomutov M. Cvijovic,P. Knowles, A.S. Pazgalev, A. Weis P. Fierlinger, M. Horras1, F. Kuchler N.N. G. Quéméner, D. Rebreyend,S. Roccia G. Bison N. Severijns,N.N. N. du FresnevonHohenesche, G. Hampel, J.V. Kratz, T. Lauer, C. Plonka-Spehr, N. Wiehl W. Heil, Yu. Sobolev3 I. Altarev, E. Gutsmiedl, S. Paul, R. Stoepler M. Daum, R. Henneck,K. Kirch, A. Knecht4, B. Lauss, A. Mtchedlishvili, G. Petzoldt, G. Zsigmond The Neutron EDM Collaboration

  17. High intensity/precision frontier • MEG (meg) • UCN, nEDM • FAST • MuSun • m Hydrogen Lamb shift

  18. Muon Lifetime Measurement with FAST FAST aims for a 2ppm (4 ps) measurement of the μ+ lifetime to determine the Fermi constant GF to 1ppm Increase the event sample by a factor 100 and reduce the systematics by a factor 10 compared to earlier measurements. This requires a precise measurement of few x1011 μ+ decays over several tm periods (Imaging , parallel acquisition, high rate) • A continuous p+ beam (pM1) is stopped in a highly granular fast imaging target. • The full p-m-e chain is identified by FPGA logic and the time of particles is measured. • DAQ data flow of 80 MBytes/s requires online analysis. • Remote operation of the detector, group of only about 10 act. members.

  19. Results and Outlook 2006 – 2007 Commissioning 1010 events taken 2008 Data Taking 3 x 1011 events taken in 140 days Very preliminary: d (tm) = 3.2 ppm (stat) d (GF) = 1.6 ppm 2009 last year of data taking: Runs to study systematics Additional data set of 3 x 1011 events to finish the 1ppm measurement Physics Letters B 663 (2008) 172–180

  20. High intensity/precision frontier • MEG (meg) • UCN, nEDM • FAST • MuSun • m Hydrogen Lamb shift

  21. theMuSun experiment at PSI (Urbana-Gatchina-PSI-Lexington-Boston-Louvain collaboration) μ + d  n + n + νμ model-independent connection via effective field theories a precise measurement of the μd-capture rate calibrates thebasic solar fusion reactionp + p  d + e+ + andimportant neutrino reactions  + d  p + p + e- /  p + n + 

  22. cut-out view of the MuSun detector:measures the μ e lifetime of each stopping muon e- eSC ePC2 ePC1 mPC Cryo-TPC μ- mSC

  23. the 30K Cryo-TPC(l=15cm, h=10cm - in construction at Gatchina)

  24. High intensity/precision frontier • MEG (meg) • UCN, nEDM • FAST • MuSun • m Hydrogen Lamb shift

  25. PSI-XFEL 2005 -2016 Accelerators R&D at PSI Synchrotron Light Source 1990 - 2000 Second generation X-ray laser Proton Cyclotron 1980 - 1990 Innovative concept for a compact X-ray laser • Small emittance • High gradient acceleration (DC, RF) • Lower current beam • Lower electron energy, shorter linac • Shorter undulator period

  26. European XFELDESY 2013 1 km Japan SCSS – SPring8 2010 USA LCLS – SLAC 2009 X-FEL facilities

  27. Small emittance gun R&DTests of field emission, high „DC“ accelerating gradient based source

  28. First results with low emittance demonstration R&D • Laser Photo-Field Emission from Needle Cathodes for Low Emittance Electron Beams,R. Ganter et. al. Phys. Rev. Lett. 100, 064801 (2008) http://fel.web.psi.ch

  29. Construction of 250 MeV injector PSI – XFEL Layout

  30. CLIC @ 12 GHz: synergies with PSI-XFEL • CLIC 100 MeV/m accelerating structures development needs stand alone klystron source:ordered 1 from SLAC • PSI – XFEL also needs such sourcesordered 2 from SLAC • Testing is done at SLAC and KEKfor now… two beam test standat the CTF3 test facility at CERN PSI/EPFL contributions to CTF3

  31. Tunnel Temperature [0C] 25 ± 0.03 25.4 25.3 25.2 25.1 25.0 24.9 24.8 24.7 1 day average Temperatures of the 5 Sectors Stable small emittance beams in rings • Constant thermal load on: • Beam line optics • Accelerator components (BPMs, vacuum chamber…) Beamsizes σxσy [µm] σx σy 1 day σx 1 mm average Temperatures of the 5 Sectors 0.050 Vertical emittance ey 4 pm-rad; coupling ey/ex ~ 0.08%

  32. Damping Rings beam emittances

  33. CMS Barrel Pixel System PSI / Uni ZH / ETHZ / Uni BS */ HEPHY 3 Layers: r = 4, 7, 11 cm 3D precision tracking points Measure impact parameter from b, c, t – particles decays Track seeding in CMS Pixel Module • Development of : • ROC, Bumpbonding & Module (PSI) • Sensor (PSI, Uni BS, Uni ZH) • Readout Chain & Module Testing (ETHZ) • Mechanics & Supply Tube (Uni. ZH) • VME - FED module (HEPHY, Vienna) (65mm x 22mm) ~ 65’000 pixel

  34. PSI Pixel Detector for the CMS Experiment@CERN Pixel modules mounted onto C-fibre mechanics 768 pixel modules 3 cylindrical layers  48 Mega pixel Pixel modules designed for continous data rates of 40 Mega frames /sec  LHC Physics Pixel Detector successfully installed and integrated in the center of CMS taking cosmics 25. July 08 Installation into CMS 24.July 08

  35. CMS Cosmic Run • Nov 2008 CRAFT Run • Cosmic Run of whole CMS with 3.8T magnetic field • gives about 77k cosmic tracks in Pixel Detector • Pixel Detector works well • Alignment of pixel detector • Test & understand detector

  36. CMS Pixel Spin-Off : Pilatus X-ray Pixel Detector • X-ray counting digital pixel detector for synchrotron applications • Digital X-ray film fast, direct, distortion free electronic readout • Spin off development ( 1997 ) from CMS Pixel Detector • Spin off company DECTRIS 2007 2009 ~ 15 employees Delivers advances pixel x-ray detectors to all major synchrotron labs in world 80mm 36 mm BESSY Innovation Price 2007 Ch. Brönnimann, SLS E. Eikenberry, SLS R. Horisberger, TEM

  37. Cancer treatment with proton beam TUMOR CONTROL 95% (Brain-, head and neck-, spine- tumors, pelvis sarcoma) Patients every 25 – 30 min 420 Children under anesthesia 40 EYE MELANOMA 98% Patients treated 5000

  38. COME VISIT PSI!

More Related