1 / 29

Paper: A Unified Theory of Timing Budget Management

Paper: A Unified Theory of Timing Budget Management. Presented by: Hangcheng Lou Original Authors: Soheil Ghiasi, Elaheh Bozorgzadeh, Siddharth Choudhuri, Majid Sarrafzadeh. EECS 527 Paper Presentation. Outlines Introduction Problem formulation Solution and algorithm

falala
Download Presentation

Paper: A Unified Theory of Timing Budget Management

An Image/Link below is provided (as is) to download presentation Download Policy: Content on the Website is provided to you AS IS for your information and personal use and may not be sold / licensed / shared on other websites without getting consent from its author. Content is provided to you AS IS for your information and personal use only. Download presentation by click this link. While downloading, if for some reason you are not able to download a presentation, the publisher may have deleted the file from their server. During download, if you can't get a presentation, the file might be deleted by the publisher.

E N D

Presentation Transcript


  1. Paper: A Unified Theory of Timing Budget Management Presented by: Hangcheng Lou Original Authors: Soheil Ghiasi, Elaheh Bozorgzadeh, Siddharth Choudhuri, Majid Sarrafzadeh

  2. EECS 527 Paper Presentation • Outlines • Introduction • Problem formulation • Solution and algorithm • Equivalent formulations • Optimal algorithm • Extension to other budget policies • Weighted budget distribution • Bounded budget distribution • Min-Max budget distribution • Experimental results • Q & A

  3. Introduction • Introduction • Problem Formulation • Solution and Algorithm • Extension to other budget policies • Experimental Results • Timing budgeting versus Path-based placement • Delay and placement dilemma • Efficiency and performance • Previous solutions • Zero slack algorithm

  4. Zero-Slack Algorithm Example I1 2 I2 4 O1 6 I3 3 O2 0 I4 • Introduction • Problem Formulation • Solution and Algorithm • Extension to other budget policies • Experimental Results • Example: Use the zero-slack algorithm to distribute slack • Format: <AAT, Slack, RAT>, [timing budget] O1: <13,4,17> O2: <6,8,14> [0] <1,4,5> [0] <3,4,7> [0] <0,5,5> [0] <7,4,11> [0] <13,4,17> [0] <1,6,7> [0] <6,8,14> [0] <6,5,11> [0] <3,5,8>

  5. Zero-Slack Algorithm Example • Introduction • Problem Formulation • Solution and Algorithm • Extension to other budget policies • Experimental Results • Example: Use the zero-slack algorithm to distribute slack • Format: <AAT, Slack, RAT>, [timing budget] • Find the path with the minimum slack O1: <13,4,17> O2: <6,8,14> [0] <1,4,5> [0] <3,4,7> I1 2 I2 [0] <0,5,5> [0] <7,4,11> [0] <13,4,17> 4 O1 6 I3 [0] <1,6,7> [0] <6,8,14> 3 O2 0 I4 [0] <6,5,11> [0] <3,5,8>

  6. Zero-Slack Algorithm Example • Introduction • Problem Formulation • Solution and Algorithm • Extension to other budget policies • Experimental Results • Example: Use the zero-slack algorithm to distribute slack • Format: <AAT, Slack, RAT>, [timing budget] • Find the path with the minimum slack • Distribute the slacks and update the timing budgets O1: <17,0,17> O2: <6,8,14> [1] <1,0,1> [1] <4,0,4> I1 2 I2 [0] <0,2,2> [1] <9,0,9> [1] <16,0,16> 4 O1 6 I3 [0] <1,4,5> [0] <6,8,14> 3 O2 0 I4 [0] <6,4,10> [0] <3,4,7>

  7. Zero-Slack Algorithm Example • Introduction • Problem Formulation • Solution and Algorithm • Extension to other budget policies • Experimental Results • Example: Use the zero-slack algorithm to distribute slack • Format: <AAT, Slack, RAT>, [timing budget] • Find the path with the minimum slack • Distribute the slacks and update the timing budgets O1: <17,0,17> O2: <6,8,14> [1] <1,0,1> [1] <4,0,4> I1 2 I2 [2] <0,0,0> [1] <9,0,9> [1] <16,0,16> 4 O1 6 I3 [0] <1,4,5> [0] <6,8,14> 3 O2 0 I4 [0] <6,4,10> [0] <3,4,7>

  8. Zero-Slack Algorithm Example • Introduction • Problem Formulation • Solution and Algorithm • Extension to other budget policies • Experimental Results • Example: Use the zero-slack algorithm to distribute slack • Format: <AAT, Slack, RAT>, [timing budget] • Find the path with the minimum slack • Distribute the slacks and update the timing budgets O1: <17,0,17> O2: <6,8,14> [1] <1,0,1> [1] <4,0,4> I1 2 I2 [2] <0,0,0> [1] <9,0,9> [1] <16,0,16> 4 O1 6 I3 [2] <1,2,3> [0] <6,8,14> 3 O2 0 I4 [2] <6,2,8> [0] <3,2,5>

  9. Zero-Slack Algorithm Example • Introduction • Problem Formulation • Solution and Algorithm • Extension to other budget policies • Experimental Results • Example: Use the zero-slack algorithm to distribute slack • Format: <AAT, Slack, RAT>, [timing budget] • Find the path with the minimum slack • Distribute the slacks and update the timing budgets O1: <17,0,17> O2: <10,4,14> [1] <1,0,1> [1] <4,0,4> I1 2 I2 [2] <0,0,0> [1] <9,0,9> [1] <16,0,16> 4 O1 6 I3 [3] <1,0,1> [0] <10,4,14> 3 O2 0 I4 [3] <7,0,7> [0] <3,1,4>

  10. Zero-Slack Algorithm Example • Introduction • Problem Formulation • Solution and Algorithm • Extension to other budget policies • Experimental Results • Example: Use the zero-slack algorithm to distribute slack • Format: <AAT, Slack, RAT>, [timing budget] • Find the path with the minimum slack • Distribute the slacks and update the timing budgets O1: <17,0,17> O2: <10,4,14> [1] <1,0,1> [1] <4,0,4> I1 2 I2 [2] <0,0,0> [1] <9,0,9> [1] <16,0,16> 4 O1 6 I3 [3] <1,0,1> [4] <10,4,14> 3 O2 0 I4 [3] <7,0,7> [1] <3,0,3>

  11. Zero-Slack Algorithm Example • Introduction • Problem Formulation • Solution and Algorithm • Extension to other budget policies • Experimental Results • Example: Use the zero-slack algorithm to distribute slack • Format: <AAT, Slack, RAT>, [timing budget] • Find the path with the minimum slack • Distribute the slacks and update the timing budgets O1: <17,0,17> O2: <10,0,10> [1] <1,0,1> [1] <4,0,4> I1 2 I2 [2] <0,0,0> [1] <9,0,9> [1] <16,0,16> 4 O1 6 I3 [3] <1,0,1> [4] <10,0,10> 3 O2 0 I4 [3] <7,0,7> [1] <3,0,3>

  12. Problem Formulation • Introduction • Problem Formulation • Solution and Algorithm • Extension to other budget policies • Experimental Results • Formulation by linear programming model • (1) • (2) • (3) • dij is the delay and bij is the budget • T is the timing constraint, largest delay • DAG G(V,E) model the delay for nodes • Goal: • Maximize where b denotes the budget on edge eij.

  13. Problem Formulation • Introduction • Problem Formulation • Solution and Algorithm • Extension to other budget policies • Experimental Results • Linear Programming Example

  14. Problem Formulation • Introduction • Problem Formulation • Solution and Algorithm • Extension to other budget policies • Experimental Results • Formulation by linear programming model • (1) • (2) • (3) • dij is the delay and bij is the budget • T is the timing constraint, largest delay • rij is defined to be the required timing constraint • Define flow supply:

  15. Solution and Algorithm • Introduction • Problem Formulation • Solution and Algorithm • Extension to other budget policies • Experimental Results Dual Problem • Basic idea: Maximize the budgets, transform the problem

  16. Solution and Algorithm • Introduction • Problem Formulation • Solution and Algorithm • Extension to other budget policies • Experimental Results Dual Problem • Duality

  17. Solution and Algorithm • Introduction • Problem Formulation • Solution and Algorithm • Extension to other budget policies • Experimental Results Primal: Max z = 2x1+x2, x1+x2 ≤ 4, x1-x2 ≤ 2, x1 ≥ 0, x2 ≥ 0. Dual: Min v = 4y1+2y2, y1+y2 ≥ 2, y1-y2 ≥ 1, x1 ≥ 0, x2 ≥ 0. • Duality example • Constaint  Variable • Variable  Constraint

  18. Solution and Algorithm • Introduction • Problem Formulation • Solution and Algorithm • Extension to other budget policies • Experimental Results Source:http://www.math.kth.se/~sasane/SF1811/L6/L6ENG.pdf • Min-cost flow problem

  19. Solution and Algorithm • Introduction • Problem Formulation • Solution and Algorithm • Extension to other budget policies • Experimental Results • Min-cost flow problem Source:http://www.math.kth.se/~sasane/SF1811/L6/L6ENG.pdf

  20. Solution and Algorithm • Introduction • Problem Formulation • Solution and Algorithm • Extension to other budget policies • Experimental Results • Example

  21. Solution and Algorithm • Introduction • Problem Formulation • Solution and Algorithm • Extension to other budget policies • Experimental Results • Algorithm summary

  22. Extension to other budget policies • Introduction • Problem Formulation • Solution and Algorithm • Extension to other budget policies • Experimental Results • Solution: define new to transform again • Weighted budget distribution • Introduce the weight for different net

  23. Extension to other budget policies • Introduction • Problem Formulation • Solution and Algorithm • Extension to other budget policies • Experimental Results • Solution: define backward flow • Bounded budget distribution • Upper bound is applied to the delay of edge

  24. Extension to other budget policies • Introduction • Problem Formulation • Solution and Algorithm • Extension to other budget policies • Experimental Results • Bounded budget distribution • Example: • nodes a and e --- upper bound =3 • Rest of nodes –- upper bound = 4

  25. Extension to other budget policies • Introduction • Problem Formulation • Solution and Algorithm • Extension to other budget policies • Experimental Results • Min-Max budget distribution • Goal: minimizing the maximum budget • minimize the budget skew • Solution: binary search on the budget upper bounds

  26. Experimental Results • Introduction • Problem Formulation • Solution and Algorithm • Extension to other budget policies • Experimental Results • Environment • Xilinx synthesis

  27. Experimental Results • Introduction • Problem Formulation • Solution and Algorithm • Extension to other budget policies • Experimental Results • Result

  28. Experimental Results • Introduction • Problem Formulation • Solution and Algorithm • Extension to other budget policies • Experimental Results • Result • Area and runtime • Improve Slice 25.8% on average • Improve LUT counts 28.7% on average

  29. Q&A

More Related