1 / 35

 Dalitz decay :

From theory….  Dalitz decay :. lagrangian. eVdm. …to HADES experimental spectra. preliminary. B. Ramstein, IPN Orsay In collaboration with J. Van de Wiele. GSI, HADES Collaboration Meeting , 05/07/08. Dalitz decay in transport codes: C+C 2 GeV. IQMD. Dalitz pn. No medium effects.

farhani
Download Presentation

 Dalitz decay :

An Image/Link below is provided (as is) to download presentation Download Policy: Content on the Website is provided to you AS IS for your information and personal use and may not be sold / licensed / shared on other websites without getting consent from its author. Content is provided to you AS IS for your information and personal use only. Download presentation by click this link. While downloading, if for some reason you are not able to download a presentation, the publisher may have deleted the file from their server. During download, if you can't get a presentation, the file might be deleted by the publisher.

E N D

Presentation Transcript


  1. From theory…  Dalitz decay: lagrangian eVdm …to HADES experimental spectra preliminary B. Ramstein, IPN Orsay In collaboration with J. Van de Wiele GSI, HADES Collaboration Meeting , 05/07/08

  2. Dalitz decay in transport codes:C+C 2 GeV IQMD • Dalitz pn No medium effects HSD Me+e-(GeV/c2) Thomère,Phys ReV C 75,064902 (2007) E. Bratkovskaya nucl-th 07120635 Important issue for understanding intermediate mass dilepton yield

  3. q2 = M2inv(e+e-) = M*2 > 0 Time Like  - N transition: Complementary probes of electromagnetic structure of N -  transition Space Like N -  transition : extraction of electromagnetic form factors GE(q2), GM(q2), GC(q2) e- e- q2 = M* = - Q2 < 0 * p D+ →Np Lots of data, Mainz, Jlab Pion electro/photo-production  Dalitz decay : intrinsic interest of the measurement  Dalitz decay p D+ * e+ Branching ratio not measured experimental challenge e-- e--

  4. N- Dalitz decay dilepton yield: ingredients of the calculation Strong interaction model • 1) N N N : • Mass dependent width Breit-Wigner, with possible cut-offs • model for t dependence or angular distribution QED N N • 2 )  N e- e + • exact field theory calculation • 3 independent amplitudes: • e.g. Electric, Magnetic and Coulomb p N D+ * QCD e+ q2 = M*2 > 0 3) electromagnetic form factors GM(q2),GE(q2),GC(q2)  Dalitz decay e--

  5. N  N- em transition : what do we know? « Photon point » : q2=0 GM(0)=3, GE(0)~0 • at q2=0, mainly M1+ (magnetic) transition • At finite q2, many recent data points from Mainz, Jlab: • multipole analysis of ° or + electroproduction (%) GM(q2) related to GE(q2 ) (%) related to GC( q2 ) Many models: dynamical models (Sato,Lee), EFT (Pascalutsa and Vanderhaeghen), Lattice QCD, two component modelQ. Wan and F. Iachello What about time-like region ?

  6. N- transition em structure: what about time-like region? • Problems in Time-like region • No data • Electromagnetic form factors are complex But,… •  decay width doesn’t depend on phases of form factors • q2 stays small in  Dalitz decay at M =1232 MeV/c2 ,q2 < 0.09 GeV/c2 Space Like: q2<0 Time Like: q2>0 complex GTL(q2) Analytic continuation : real GSL(q2) Models constrained by data eg. GTL(q2) = GSL(-q2) or GTL(q2) = GSL(-q2ei),… • 2 options: • take constant form factors HSD, UrQMD, IQMD • use models for form factors GE(q2),GM(q2),GC(q2) : VDM,eVDM, (RQMD)two component Iachello model

  7. GM(q2) M=1.3 GeV/c2 0.6m2 M=1.1 GeV/c2 __ pure QED __ Iachello FF M=1.5 GeV/c2 M=1.7 GeV/c2 Sensitivity to Iachello form factor • two component model: • Unified description of all baryonic transition form factors • Direct coupling to quarks + coupling mediated by  • Analytic formula • 4 parameters fitted on • elastic nucleon FF (SL+TL) • SL N- transition GM

  8. PLUTO simulations: sensitivity to Iachello’s form factor in pe+e- events from  Dalitz decay E. Morinière, PHD thesis pp @ 1.25 GeV pe+e- events Normalisation problem now solved →no sensitivity at E=1.25 GeV

  9. N- Dalitz decay dilepton yield: ingredients of the calculation Strong interaction model • 1) N N N : • Mass dependent width Breit-Wigner, with possible cut-offs • model for t dependence or angular distribution QED N N • 2 )  N e- e + • exact field theory calculation • 3 independent amplitudes: • e.g. Electric, Magnetic and Coulomb p N D+ * QCD e+ q2 = M*2 > 0 3) electromagnetic N- transition form factors GM(q2),GE(q2),GC(q2)  Dalitz decay e--

  10.  Dalitz decay in « reference » papers Jones and Scadron convention • form factor conventions (including or not isospin factor of the amplitude) • choices of form factors • analytic formula for differences See Krivoruchenko et al. Phys.Rev.D 65, 017502 « remarks on  radiative and Dalitz decays »

  11. X4 (misprint) Comparing different  Dalitz decay dilepton spectra: • analytic formula for • and form factors values at q2=0 from 4 papers  compare dilepton spectra for M=1232 MeV/c2

  12.  mass dependence factor 1.5 factor 1.7 factor 2.2 factor 2 Me+e-( GeV/c2) Discrepancy increases with  mass But also off-shell effects problem at high  mass

  13. Branching Ratio Expt « Wolf »: HSD before 2007, IQMD, UrQMD « Ernst » HSD after 2007 « Krivoruchenko » RQMD Zetenyi PLUTO Radiative decay (10-3) 5.6± 0.4 6.0 8.7 7.05 (HSD) 5.6 5.6 Dalitz decay (10-5) ? 4.6 6.5 5.3 (HSD) 4.12 (const.GM) 4.25 (e-VDM) 4.12 4.4 Pretty well! Radiative decay width OK Check: radiative decay width values M=1232 MeV/c2 For M* =0 radiative decay width Dalitz decay width

  14. Direct effect:different normalisation of  Dalitz decay dilepton spectrum Same « Ernst » formula Pluto BR(+→pe+e-) = 4.4 10-5 HSD BR (+→pe+e-) =5.3 10-5

  15. Field theory calculation: Leptonic current • Amplitude Same as for →N hadronic current E,M,C : eg Krivoruchenko « standard normal parity set »: eg Wolf • Spin ½ projector (Dirac spinors) • spin 3/2 projector (Rarita-Schwinger spinors) • Traces of products of  matrices Calculation of JH(..) JH ’*(..)* JL’(..) JL(…) * phase space From reference papers and Jacques Van de Wiele’s work • Differential decay width: • Electromagnetic hadronic current: 2 sets of covariants can be used:

  16.  Dalitz decay width calculation: results • Jacques Van de Wiele’s calculation → same analytical function as Krivoruchenko’s • Can also be expressed in terms of g1,g2,g3: • Shyam and Mosel; Kaptari and Kämpfer: • g1=5.42, g2=6.61, g3=7 equivalent to GM=3.2 GE=0.04 GC~0.2 • Zetenyi and Wolf: g1=1.98, g2=0,g3=0 • fitted to reproduce radiative decay width • →same Dalitz decay width as Van de Wiele/Krivoruchenko q2 dependence negligible for  Dalitz decay

  17.  Dalitz decay width calculation: results and suggestions for new PLUTO inputs p D+ * e+ q2 = M*2  Dalitz decay e-- • * angular distribution • « helicity distribution » • Krivoruchenko/Van de Wiele ( or « Zetenyi » ) expression for • Electromagnetic N- transition form factors • Branching ratio Ok with E. Bratkovskaya, Phys. Lett. B348 (1995) 283 M=1232 MeV/c2

  18. N- Dalitz decay dilepton yield: ingredients of the calculation Strong interaction model • 1) N N N : • Mass dependent width Breit-Wigner, with possible cut-offs • model for t dependence or production angular distribution QED N N • 2 )  N e- e + • exact field theory calculation • 3 independent amplitudes: • e.g. Electric, Magnetic and Coulomb p N D+ * QCD e+ q2 = M*2 > 0 3) electromagnetic form factors GM(Q2),GE(q2),GC(Q2)  Dalitz decay e--

  19. e+ Same as in  photoproduction e-- N N N model:  polarisation effects  Dalitz decay N • polarization 4x4 density matrix ms= -3/2,-1/2,1/2,3/2 N N D+ * Anisotropy of * angular distribution p Spin-isospin excitation 1 exchange  +  exchange Effective interaction,… Long. polarization : (pure 1 exch.) 1/2 1/2 =  -1/2 -1/2 =1/2 others ij=0 Transv. polarization : ( exch.) 3/2 3/2 =  -3/2 -3/2 =1/2 others ij=0 Jacques Van de Wiele’s result

  20. e+ e- p p , N p p p p pD p e+ , N e- pp ppe+e- interference effects Interference between all graphs including either a Delta or a nucleon + ….. + , cf Kaptari and Kämpfer,…. In PLUTO: factorization of NN → N cross section and (→Ne+e-): p p 1 No Bremstrahlung two exit protons are distinguishable p2 D+ p e+ q2=M2inv(e+e-)=M* e-

  21. Origin of high dilepton mass tails HSD  HSD p+p 1.25 GeV PLUTO HSD PLUTO 12C+12C 1 AGeV  tail at high dilepton mass: absent in PLUTO ? absent in pp and pn ? Different  mass distributions ?

  22. pp@1.25 GeV + from p° W. Przygoda’s talk  from e+e-p M(e+e-)>140 MeV/c2 Ania Kozuch’s talk q2=0.02 (GeV/c)2 q2=0.2 (GeV/c)2 Delta mass distribution in PLUTO: • Dmitriev’s mass distribution parametrisation • but with Moniz vertex form-factors Mass distribution Teis = 300 MeV/c Dmitriev = 200 MeV/c M(MeV/c2) d/dM high mass dilepton yield is sensitive to high  mass E. Morinière, PHD thesis

  23. Quite well known, can be improved with our data N- Dalitz decay dilepton yield: ingredients of the calculation Strong interaction model • 1) N N N : • Mass dependent width Breit-Wigner, with possible cut-offs • model for t dependence or angular distribution QED N N Exact calculation, But offshell effects? • 2 )  N e- e + • exact field theory calculation • 3 independent amplitudes: • e.g. Electric, Magnetic and Coulomb p N D+ * QCD e+ q2 = M*2 > 0 No sensitivity at E=1.25GeV, Important at E=2.2 GeV or in -p E=0.8 GeV/c 3) electromagnetic form factors GM(q2),GE(q2),GC(q2)  Dalitz decay e--

  24. Ania Kozuch’s talk pp → pp ° E=1.25 GeV Tingting’s talk pp →pn+ E=1.25 GeV • Experiment • Simulation total • Simulation D++ • SimulationD+ • SimulationN* Normalized yield simulation total Marcin Wisniovski pp → pp ° pp → pn + E=2.2 GeV Sexperiment =1.39*106 events Ssimulation =1.37*106 events Very good agreement

  25. „pure ” pp→ppe+e-, pn →ppe+e-Challenging data ? Tetyana Witold + (p,e+,e-) invariant mass dilepton angle, helicity angle,…

  26. Conclusion • A lot of different models to describe HADES data • Different results , but we need to understand the reasons • Some investigations for  Dalitz decay • A lot of other questions about other processes • Let’s start the discussions…

  27. Results of simulations for  Dalitz decay Possibility to reduce ° background to 20% 1500 e+e-p events In HADES acceptance 7 days of beam time Better sensitivity to discriminate pp bremstrahlung

  28. MD

  29. Efficiency and acceptance corrected pp data,comparison to transport model calculation IQMD preliminary Δ→e+e-N seems to explain e+e- yield in p+p at 1.25 GeV

  30. Dalitz decay in transport codes:p+p and pn at 1.25 GeV Isospin effects

  31. Analytic continuation : Time Like: Space Like: analytic continuation to Time-Like region: 3) Intrinsic form factor: Space Like: Time Like: Q2  - q2 ei phase : • removes singularity at q2=1/a2 (~ 3.45 (GeV/c)2) •  =53° fitted to elastic nucleon form factors Time Like data • same value taken for N -  transition

More Related