1 / 39

Application of TBDs

Application of TBDs. Technical development Ordered TBDs Operations on ordered TBDs ( ,,) Reduced ordered TBDs. M odel checking == Manipulation of TBDs. Ordered TBDs. p 1. p 2. p 3. p n. p n+1. Ordered TBDs. p n+1. - p n+1. u. x. y. z. Example. A. - B. - B. - C.

farren
Download Presentation

Application of TBDs

An Image/Link below is provided (as is) to download presentation Download Policy: Content on the Website is provided to you AS IS for your information and personal use and may not be sold / licensed / shared on other websites without getting consent from its author. Content is provided to you AS IS for your information and personal use only. Download presentation by click this link. While downloading, if for some reason you are not able to download a presentation, the publisher may have deleted the file from their server. During download, if you can't get a presentation, the file might be deleted by the publisher.

E N D

Presentation Transcript


  1. Application of TBDs Technical development Ordered TBDs Operations on ordered TBDs (,,) Reduced ordered TBDs Model checking == Manipulation of TBDs

  2. Ordered TBDs p1 p2 p3 pn pn+1

  3. Ordered TBDs pn+1 -pn+1 u x y z

  4. Example A - B - B - C A - C - D - D - D D - A

  5. Example A - B - B - C A - C - D - D - D D - A

  6. Example A - B - D - C D C - D - D - D - D D - D

  7. Operations Negation Conjunction Abstraction s s t • x s

  8. Negation u - u x y z x y z

  9. Conjunction pn+1 u u

  10. Conjunction - pn+1 - pn+1 u

  11. Conjunction a a x y z x y z x’ y’ z’ a x’ y’ z’

  12. Conjunction - a - a x y z pn+1 x y z z x’ y’ - a z’ z’ x’ y’ z’

  13. Conjunction a - a x y z x y z x’ y’ z’ z’ - a x’ y’ z’

  14. Conjunction a a x y z x y z b/-b b/-b x’ y’ z’

  15. Conjunction - a a x y z x y z b/-b b/-b b/-b b/-b x’ y’ z’

  16. Abstraction An abstraction of a TBD on a label u = Conjunction of a simplication on –u and a simplication on u

  17. Simplification on a Label u/-u A - B - B - C A - C - D - D - D D - A Select all non-terminal nodes labeled with singed/unsignedu Replace the selected nodes with a simpler one according to given rules

  18. Simplification for a node with label u u - u u x y z x y z z

  19. Simplification for a node with label -u - u - u u x y z x y z z

  20. Abstraction on u Given a TBD. (1) Make a simplification on –u and a simplification on u (2) Make a conjunction of the two simplifications u z

  21. Existential Abstraction on u u z

  22. Properties s1 s2 t1 t2 s1 s2 s1 s2 t1 t2 • u • u s1 s2

  23. Observation: comp(s) p1 : : pn s pn+1

  24. Quantified Boolean Formulas Consider formulas with variables p1,p2,…,pn pi φ φΨ x. φ pi s s • x t s - pn+1 pn+1 pn+1 φ is valid comp( ) holds s

  25. Reduced Ordered TBDs u x y - pn+1 Not allowed x - pn+1 pn+1 x pn+1 - pn+1 y pn+1 y pn+1 x x y Non-terminal x y y y pn+1 y x y x>0

  26. Reduction Rules for u u T T’ - z - z - z - z T - z z z T T T T z T

  27. Reduction Rules for u u u - z • T z - z z T T • - z z - z z T T • T’ T’ T z T’ T • T’ T z T’ T

  28. Reduction Rules for -u - u T T’ - z z - z - z T z z z T - T T T z - T

  29. Reduction Rules for -u - u - u - z • T z - z z T T • - z z - z z T T • T’ T’ T z T’ T • T’ T z T’ T - u u z • T z - z - T z T • z z - T - z z

  30. Explanation on Some Rules (Semantics) u - u u ~x ~y - z - z - z ~x ~y z ~x ~y

  31. Explanation on Some Rules (1) u - u u ~x ~y - z - z - z - x - y z - x - y x - y z x - y - x y z - x y x y z x y

  32. Explanation on Some Rules u - u u ~x ~y - z - z - z - x - y z - x - y x y z x y

  33. Explanation on Some Rules u -u/u ~x ~y - z - z - x - x z - x x x z x

  34. Explanation on Some Rules u T T’ - z - z T T z T

  35. Explanation on Some Rules (2) u - u u ~x ~y - z - z - z - x - y z - x - y x - y z x - y - x y z - x y x y z x y

  36. Explanation on Some Rules u - u u ~x ~y - z - z - z - x - y z - x - y x y z x y

  37. Explanation on Some Rules u -u/u ~x ~y - z - z - x - x z - x x x z x

  38. Explanation on Some Rules u T T’ - z - z - z - z T - z z z T T T T z T

  39. Boolean Diagram Model Checking m variables for representing states 2m variables for representing transitions Let n=2m Construct a TBD for the formula representing the initial states Construct a TBD for the formula representing the transition relation The rest follows from the CTL model checking techniques

More Related