230 likes | 376 Views
Senior Seminar. Department of Chemistry. Insights into Protein Biosynthesis. Entropic Origin of Catalytic Power?. Luigi J. Alvarado Biochemistry, B.S. Class of 2009. April 2, 2009. Outline. Protein Translation The Ribosome Chemistry of Peptide-bond Formation Entropic Phenomenon?
E N D
Senior Seminar Department of Chemistry Insights into Protein Biosynthesis Entropic Origin of Catalytic Power? Luigi J. Alvarado Biochemistry, B.S. Class of 2009 April 2, 2009
Outline • Protein Translation • The Ribosome • Chemistry of Peptide-bond Formation • Entropic Phenomenon? • Other factors • Conclusions • Aknowledgements
http://www.youtube.com/watch?v=Jml8CFBWcDs&feature=related http://www.youtube.com/watch?v=5bLEDd-PSTQ I. Protein Translation
II. Ribosome • 2.5 MDa/ 4 MDa • rRNA + Protein • Subunits, Domains • A-, P-, E-sites • Tunnels • Peptidyl Transfer Center (PTC)
II. Ribosome (cont’d) - PTC • Domain V of 23S rRNA • No proteins within 15Å • Provides suitable environment • tRNA-binding NTs: • G2251, G2252, A2448, A2450, G2455, U2506, G2583, U2585, and A2602. • 2-fold symmetry • Synchronized rotation duet (45° 180°) • Geometry between the moieties • Solvent reorganization Bashan et al. Mol. Cell2003, 11, 91-102.
II. Ribosome (cont’d) - PTC Bashan et al. Mol. Cell2003, 11, 91-102.
III. Chemistry of Peptide-Bond Formation Ribosomal Reference Six-member Transition Intermediate
III. Chemistry of Peptide-Bond Formation: Ribosomal Rodnina et al. Biochem. Soc. Trans.2005, 33, 493-498.
III. Chemistry of Peptide-Bond Formation: Ribosomal • Nucleophilic attack • Free-tRNA + pept-tRNA • Regio- and stereo-specificity • Methods: Quench-flow assays • 1967: Fragment Rxns N-blocked aminoacylated oligoNT (CCA-fMet) and Pmn • 2002: pept-tRNA + CPmn Sievers et al. Proc. Natl. Acad. Sci.2004, 101, 7897-7901.
III. Chemistry of Peptide-Bond Formation: Reference • Ester aminolysis • Methods: 1H-NMR • Pseudo-first and second order kinetics • Exclusive attack of the conjugate base of glycinamide. • Polar solvent (+) • Ionic strength (0) Schroeder, G; Wolfenden, R. Biochemistry2007, 46, 4037-4044
III. Chemistry of Peptide-Bond Formation: Reference N-fPhe-TFE Schroeder, G; Wolfenden, R. Biochemistry2007, 46, 4037-4044 N-fPhe-glycinamide N-fPhe
III. Chemistry of Peptide-Bond Formation Six-Member Transition Intermediate Weinger, J.; Strobel, S. Biochemistry2006, 45, 5939-5948.
III. Chemistry of Peptide-Bond Formation Kinetics and Thermodynamics • ΔH‡ = Ea – RT • ΔG‡ = -RTln[(kcat/(KMh))/(kB*T)] • ΔG‡ = ΔH‡ - TΔS‡ Sievers et al. Proc. Natl. Acad. Sci.2004, 101, 7897-7901
III. Chemistry of Peptide-Bond Formation Kinetics and Thermodynamics Kcal/mol M-1s-1 T = 25°C pH = 7.5 Schroeder, G; Wolfenden, R. Biochemistry2007, 46, 4037-4044
Rate Enhancement Ribosomal Reference 1x103 / 3x10-5 = 3x107
IV. Entropic Phenomenon? • ΔΔG‡ ~ -9 kcal/mol • ΔΔH‡ ~8 kcal/mol • ΔTΔS‡ ~18 kcal/mol • What increases the TΔS‡? • Juxtaposition of substrates • Desolvation of PTC • Methods: • MD/EVB simulations • Langevin Dipole solvent, COSMO, and Restraint Release • Explanations: • Proton shuttle model • H-bond network
IV. Entropic Phenomenon? Juxtaposition of the Substrates Beringer, M.; Rodnina, M. Mol. Cell2007, 26, 311-321
IV. Entropic Phenomenon? Desolvation of the PTC Bring reactants to same solvent cage Solvation Orientational Sharma et al. Biochemistry2005, 44, 11307-11314
V. Other Factors H-bond Networks Pre-set Electr. Environ. Beringer, M.; Rodnina, M. Mol. Cell2007, 26, 311-321
VI. Conclusions Schroeder, G; Wolfenden, R. Biochemistry2007, 46, 4037-4044
VI. Conclusions • The Ribosome is an entropy trap • Mechanism of catalysis is not driven via ΔH‡ • Ribosome provides perfect environment • 6-member TI ↔ Proton Shuttle mech. • Other factors’ influence
Aknowledgements • Dr. I. Kovach • Department of Chemistry Faculty • Class of 2009 – 2010 – 2011 • Various researchers
I Chemistry