230 likes | 377 Views
Status of the Supernova Legacy Survey (SNLS) Isobel Hook University of Oxford. SNe Ia provide direct evidence for accelerating Universe Results inconsistent with W M =1 spatially flat cosmology (SNe too faint) SN data favor L >0. with 16 ACS-discovered SNe z<1.5 (Riess et al 2004).
E N D
Status of the Supernova Legacy Survey (SNLS) Isobel Hook University of Oxford
SNe Ia provide direct evidence for accelerating Universe Results inconsistent with WM=1 spatially flat cosmology (SNe too faint) SN data favor L>0
with 16 ACS-discovered SNe z<1.5(Riess et al 2004) Riess et al (1998) If universe is flat then data require L > 0
High-z Team Riess et al 1998: WM=0.28 +/-0.1 Tonry et al 2003 WM=0.28 +/- 0.05 Riess et al 2004 WM=0.29 + 0.05–0.03 SCP Perlmutter et al 1999: WM=0.28 +0.09 -0.08 + 0.05-0.04 Knop et al 2004 : WM= 0.25 +0.07-0.06 +/-0.04 SN constraints on WM (W=1) The rest made up by “dark energy”
Cosmological constant fits the data but… Fine tuning problem? Other possibilities include quintessence Differentiate via the equation of state<w=p/r> Distinguishing w=-0.8 and w=-1 at 3σ requires ≈700 SNeIa with 0.15<z<0.9 – which SNLS will provide The nature of the dark energy
Knop et al 2003 Current Constraints on w • Assumptions: • Flat Universe • w constant in time • 2dF: M h = 0.2 ± 0.03 • KP: h = 0.72 ± 0.08 Riess et al 2004 w = –1.02 +0.13 – 0.19
Chris Pritchet: U. Victoria Ray Carlberg: U. Toronto Andy Howell: U. Toronto Mark Sullivan: U. Toronto Arif Babul: U. Victoria David Balam: U. Victoria Sara Ellison: U. Victoria F.D.A. Hartwick: U. Victoria Henk Hoekstra: CITA Don Neill: U. Toronto Julio Navarro: U. Victoria Kathy Perrett: U. Toronto David Schade: HIA Pierre Astier : CNRS-IN2P3, Paris Eric Aubourg Christophe Balland Luc Simard: HIA Peter Stetson: HIA Sidney van den Bergh: HIA Jon Willis: U. Victoria Isobel Hook: U. Oxford Justin Bronder: U. Oxford Richard McMahon: U. Cambridge Reynald Pain: CNRS-IN2P3, Paris Saul Perlmutter:LBNL Robert Knop: U. Vanderbilt James Rich: CEA-Saclay Nic Walton: U. Cambridge Eric Smith: Vanderbilt University Greg Aldering: LBNL Lifan Wang: LBNL Rachel Gibbons: LBNL Vitaly Fadayev: LBNL SNLS collaboration http://cfht.hawaii.edu/SNLS/ Stephane Basa Sylvain Baumont Sebastien Fabbro Melanie Filliol Ariel Goobar: Stockholm Delphine Guide Julien Guy Delphine Hardin Nicolas Regnault Tony Spadafora: LBNL Max Scherzer: LBNL Harish Agarwal: LBNL Herve Lafoux Vincent Lebrun Martine Mouchet Ana Mourao Nathalie Palanques Gregory Sainton Canada, France, UK, US, Sweden, Portugal
SNLS Goals • Primary goal: Use SNe Ia to determine “w” • SNLS Goal: 1000 SNe Ia (across all redshifts) • Calibration goal: 1-2% photometric accuracy • SNLS advantages: • Rolling search • Queue observing • Multi-colour lightcurves • Spectroscopic follow up • SNLS provides many consistency checks • SN colour evolution – multi-colour photometry check • Detailed studies of spectral evolution (Gemini/VLT/Keck spectra) [Bronder et al.]
CFHT imaging • 36 CCD imager MegaCam • 1 deg x 1 deg • CFHT-LS (DEEP) • 4 Fields • 202 queue nights over 5 yrs • Started August 03 • 5 epochs per field/month • (u),g’r’i’z’ • Top priority : 1 hr in i’ • every 2-3 nights • i~24.9 AB with S/N=10
SNLS Rolling Search Real-time lightcurves
Gemini N and S 2003B to 2005B: 60 hrs /semester PI: I. Hook VLT 240 hrs periods 71-74 Continuation requested P75-78 PI: R. Pain SNLS spectroscopy • Goal : measure redshifts and Types for SNLS candidates • Fainter targets with Gemini, others at VLT • Supplemented with spectra from Keck & Magellan
SN i=24.0 Example Gemini/GMOS Nod & Shuffle spectrum 2 hr exposure Wavelength
SiII Extracted spectrum • Smoothed spectrum allowing for: • template host galaxy subtraction • Reddening Best match template SN
Spectroscopic Summary to date To Jun 2005: 191 SNIa/Ia? < z > = 0.60 All close to maximum light (within ~10 days) 1st yr Gemini spectra: Howell et al (2005) VLT spectra: Basa et al (2005)
First Year Results – Hubble Diagram (Astier et al. in prep) First year results (72 SNeIa) consistent with an accelerating Universe: ΩΛ~0.7 in a flat universe
Comparison with previous SN results • Comparison of SNLS first year (72 SNe) to previous SN results – Knop et al 2003 (~50 SNe) • Shaded area shows projected end-of-survey constraints • Superior colour and time sampling of SNLS allows tighter constraints on the cosmological parameters than any previous SN sample.
Preliminary results and predictions for end of survey • w constraints with no prior on WM • Assumes flat universe • With prior on WM (e.g. from CFHT-LS weak lensing) should measure w to +/- 0.07 (stat)
Conclusions • Measurements of m and zof Type Ia SNe provide direct measurement of the acceleration of the Universe • Can measure M,w during the epoch of dark energy • Independent and complementary technique to CMB and galaxy redshift surveys • SNLS will constrain w to ~ +/-0.07, & hence the nature of the dark energy • SNLS will be the definitive high-z SN data set for ~10 years
More Information • See these websites for all details: Project overview, collaboration members, publications: • http://cfht.hawaii.edu/SNLS/ Candidate database, real-time candidate lists: • http://legacy.astro.utoronto.ca/ • Watch out for the first SNLS cosmology publication soon!