1 / 42

Kinetic Inductance Detectors

Kinetic Inductance Detectors. Jochem Baselmans. A-MKID. MUSIC. ARCONS. NIKA 2. NIKA 1. MKID operation principle. MKID - Superconducting pair breaking detector @ ~T c /10. 2 Δ. Cooper Pairs. Supercurrent. Inductance i ω L( P sky ). h . Quasiparticles. Normal current.

fausta
Download Presentation

Kinetic Inductance Detectors

An Image/Link below is provided (as is) to download presentation Download Policy: Content on the Website is provided to you AS IS for your information and personal use and may not be sold / licensed / shared on other websites without getting consent from its author. Content is provided to you AS IS for your information and personal use only. Download presentation by click this link. While downloading, if for some reason you are not able to download a presentation, the publisher may have deleted the file from their server. During download, if you can't get a presentation, the file might be deleted by the publisher.

E N D

Presentation Transcript


  1. KineticInductance Detectors Jochem Baselmans

  2. A-MKID MUSIC ARCONS NIKA 2 NIKA 1

  3. MKID operationprinciple MKID - Superconducting pair breaking detector @ ~Tc /10 2Δ Cooper Pairs Supercurrent Inductance iωL(Psky) h Quasiparticles Normal current Resistance R(Psky) Zs = R + iωL

  4. MKID operation principle MKID: • Superconducting pair breaking detector • Superconducting film • Inside a resonance circuit • Capable of coupling to radiation Detector +LC filter in one structure Superconducting film Light Dark 2 L(Psky) R(Psky) 1

  5. MKID response • Saturate at  rad for pulse • We can re-tune for high loading Increasing Power Kinetic Inductance fraction Readout tone High loading Q factor Readout tone Volume lifetime A small, non-monotonic Increasing Power θ monotonic non-linear

  6. MKID pulse response • Rise ~ few sec -> resonator ring time • Decay = quasiparticle lifetime qp • ~ 2 msec Al • ~ 50 sec Ta • ~ 50 - 1000 sec TiN Ta resonator Optical pulse

  7. MKID types /4 CPW resonator Lumped Element Kinetic Inductance Detector

  8. CPW resonator radiation coupling B. Mazinet. al., APL 89, 222507 (2006) • Yates et al., ArXiv Cond-Mat1107.4330, • Poster Mon - 028 J.Schlaerthet al., Poster Mon-16 mm sub-mm far-IR IR optical UV X-ray hard X-ray -ray  (m) 10-3 10-4 10-5 10-6 10-7 10-8 10-9 10-10 10-11 10-12 E (eV) 10-3 10-2 10-1 1 101102 103 104 105106

  9. CPW resonator radiation coupling B. Mazinet. al., APL 89, 222507 (2006) • Yates et al., ArXiv Cond-Mat1107.4330, • Poster Mon - 028 J.Schlaerthet al., Poster Mon-16 • 80% optical efficiency • Measured using photon noise mm sub-mm far-IR IR optical UV X-ray hard X-ray -ray  (m) 10-3 10-4 10-5 10-6 10-7 10-8 10-9 10-10 10-11 10-12 E (eV) 10-3 10-2 10-1 1 101102 103 104 105106

  10. LeKIDs radiation coupling Swenson et. al., APL 96, 263511 (2010) Moore, Presentation Poster Mon – 024, 025 Photons LeKID substrate Doyle et. al., JLTP 151, 530 (2008) mm sub-mm far-IR IR optical UV X-ray hard X-ray -ray  (m) 10-3 10-4 10-5 10-6 10-7 10-8 10-9 10-10 10-11 10-12 E (eV) 10-3 10-2 10-1 1 101102 103 104 105106

  11. MKID operation principle - Multiplexing MKID arrays Different length Different readout F0 Identical frequency band 1 feedline

  12. MKID operation principle - Multiplexing MKID arrays 399 KIDs Q=6e5 350 GHz 175 KIDs Q=2e4 700 GHz

  13. Amplitude Tone comb MKID Multiplexing • Create tones ~MHz • Upconvert Frequency • KIDs • modify • tones • Downconvert • Post-process

  14. KID resonance single tone close to F0 unmasked F bin Readout F bins (masked) MKID Multiplexing • 1000 – 4000 pixels per coax cable pair and LNA (4K) • Digital electronics • DDC based for fast pulse analysis • 550 MHz, 256 KIDs,(Roach, UCSB) • Channelizer for slow varying signals • 2.5 GHz, 32768 bins, 1000-2000 KIDs, 50Hz dump rate (MPIfR, Bonn)

  15. MKIDs fundamental limit: Generation –Recombination NEP # quasiparticles quasiparticle lifetime 100 nm Al 6 GHz /4 CPW resonator

  16. MKIDs fundamental limit: Generation –Recombination noise Wilson and Prober, PRB 69, 094524 (2004) Quasiparticle number Noise Power spectral Density: Level Roll-off But ….. Generation – RecombinationNoise level Temperature independent!

  17. MKIDs fundamental limit: Generation –Recombination noise • G-R noise observed in Al MKID resonator on sapphire • Can reach the fundamental limit • Allows quasiparticle counting Poster Mon - 010 Visseret al., PRL 116, 167004 (2011)

  18. MKIDs fundamental limit: Generation –Recombination NEP 50 nm Al 6 GHz /4 CPW resonator on Saphire Saturation NEP=2.5∙10-19 W/Hz½

  19. MKIDs fundamental limit – Photon noise limit • NEPMKID,Photon2= NEPphoton2 + NEPG-R2 • NEPMKID,Photon= 1.1 ∙ NEPphoton at 350 GHz forAl • NEPdetdepends on loading power as well! NEP=2.5∙10-19 W/Hz½ Photon noise limit

  20. MKID materials • Aluminium • Long lifetime (4 msec) • Tc=1.2 K • High conductivity -> hard to match to free space • Bad intrinsic optical photon absorption efficiency • Small Kinetic Inductance  -> small response • G-R limited performance demonstrated • TiN (2010) • Lifetime shorter (0.2 msec) • Tc=0.5 .. 4.3 K • High resistivity -> easy to match to free space • grey..gold -> reasonable optical photon absorption • large  -> high response • Perfect for LeKIDs • LeDucet al., APL 97, 102509 (2010) • Vissers et al., APL 97, 232509 (2010)

  21. δA δθ MKIDs excess noise • On resonance KIDs have excess noise • Fluctuations in the MKID resonance frequency • Converted to phase noise with respect to the resonance circle • KID NEP independent of Q factor

  22. MKIDs excess noise • MKIDsexcessnoise = phasenoisewrt KID circle • NO dissipation (amplitude) component • Even down to levels below the quantum limit Using a HEMT amplifier T~4 K Gaoet al., APL 90, 102507 (2007) • Using a Josephson parametric amplifier • Gaoet al., APL 98, 222903 (2011)  A  A Vacuumnoise

  23. MKIDs excess noise • Due to TLS interacting with E field -> only in C-section • In a thin surface layer Mitigation strategies • Use amplitude readout • Make the resonators C section wider • Use NbTiN + etch away substrate • Barendset al., • APL 97, 033507 (2010) • Gaoet al., APL 92, 221504 (2008) Narrow resonator Wide resonator

  24. ARCONS – optical MKID detector array Palomar 200" • ~ 1000 pixels optical LeKIDs from low-Tc TiN 0.35 – 1.35 micron • 20-70% efficiency • Resolution R=16 for 254 nm B. A Mazin et al., Proc. of SPIE 773518, 773518P-1 (2010)

  25. MUSIC – 4 color antenna coupled CPW MKID array CSO • ~ 500 pixels, 4 colors each using on chip filters • CSO end 2011 • Democam demonstrations done (2 runs) • P. Maloney et al., Proc. of SPIE 7741, 77410F (2010) • J.Schlaerthet al., Poster Mon-16

  26. NIKA 2010 – quick datasheet 144 pixels LEKID (112 usable) 256 pixels «/4+antenna» (72 usable) One week day or night run at the 30-m IRAM telescope NEFD  37 mJys0.5 Design: Grenoble Fabrication: Grenoble Electronics: ROACH1 NEFD  400 mJys0.5 Design: SRON Fabrication: Delft Electronics: ROACH1 • NIKA 2010 : • dual-band (1.25 and 2mm) !! • improved (black) baffle • improved filtering • 35K equivalent stray-light • - frequency read-out « NIKA 2010 » has been the first really competitive KID-based instrument Alessandro Monfardini, Resonators 2011, Grenoble

  27. Detector noise SKY noise Performance close to photon noise NEPopt 2.5·10-16 W/Hz0.5  photon noise Average LEKIDs detectors noise : 2Hz / Hz0.5 @ 1Hz (stable during the run) Alessandro Monfardini, Resonators 2011, Grenoble

  28. NIKA – 30 min integration on IRC10420 • 22.2 ± 1.4 mJy and 104 ± 13 mJy @ 2mm and 1 mm • Low mJy sensitivity in 30' integration

  29. Conclusions • The KIDs are coming! • Instruments become competitive in sub-mm/optical • Near photon noise limited instrument performance in sub-mm • Energy resolution ~15 in the optical • Readout systems up to 2.5 GHz / 1000-pixels available • True MUX factor of 1000-2000 close by • Few hundred demonstrated • Many new developments • On chip spectrometers (see talk Moseley and poster Deshima Mon-011) • CDMS detectors • Fluid dynamics measurement devices • He permittivity detectors • ………

  30. Acknowledgements • People in the MKID community • Organisers of this workshop

  31. NIKA 2010 – quick datasheet 144 pixels LEKID (112 usable) 256 pixels «/4+antenna» (72 usable) One week day or night run at the 30-m IRAM telescope BREAKING NEWS : New array 10 times more sensitive tested in the new NIKA 2011 cryostat (cryo-free) !! NEFD  37 mJys0.5 Design: Grenoble Fabrication: Grenoble Electronics: ROACH1 NEFD  400 mJys0.5 Design: SRON Fabrication: Delft Electronics: ROACH1 • NIKA 2010 : • dual-band (1.25 and 2mm) !! • improved (black) baffle • improved filtering • 35K equivalent stray-light • - frequency read-out « NIKA 2010 » has been the first really competitive KID-based instrument Alessandro Monfardini, Resonators 2011, Grenoble

  32. MKIDs fundamental and practical limits: overview • MKIDs are detector and LC-filter in one • MKIDs response ~Q/V and is intrinsically non-linear • Calibration required • Enormous dynamic range • MKIDs can reach a MUX ratio of about 1000 - 4000 • MKIDs are limited fundamentally by G-R noise • This should not limit the NEP, but is does because Nqp≠ 0 at T=0 K • MKIDs under load will have a small G-R contribution above NEPPhoton • MKIDs suffer from F-noise due to TLS, which can be reduced or circumvented. It limits the NEP

  33. MKID operation principle - Multiplexing 1 2 R1 L1 R2 L2 R3 L3 R4 L4

  34. MKID operation principle - Multiplexing 128 KIDs 1mm

  35. Al MKID TiN MKID

  36. MKIDs fundamental limit: Generation –Recombination noise • We observe quasiparticle creationdueto the ~GHz readoutsignal • More readout power – more quasiparticles • Thiscreates a T independent quasiparticle density at T<150 mK • The result is a saturation in NEP at a readoutpopwerdependent level

  37. MKID operation principle B(ωg) MKID • Superconducting pair breaking detector • Superconducting film • Inside a resonance circuit • Capable of coupling to radiation A(ωg) A θ Superconducting film Light Dark 2 L(Psky) R(Psky) 1

  38. B. Mazinet. al., APL 89, 222507 (2006)

  39. Outline • Introduction • MKIDs operation principle • Fundamental sensitivity limits • Excess noise • KID device types • Radiation coupling • Instruments • Conclusions

More Related