530 likes | 1.17k Views
Kinetic Inductance Detectors. Jochem Baselmans. A-MKID. MUSIC. ARCONS. NIKA 2. NIKA 1. MKID operation principle. MKID - Superconducting pair breaking detector @ ~T c /10. 2 Δ. Cooper Pairs. Supercurrent. Inductance i ω L( P sky ). h . Quasiparticles. Normal current.
E N D
KineticInductance Detectors Jochem Baselmans
A-MKID MUSIC ARCONS NIKA 2 NIKA 1
MKID operationprinciple MKID - Superconducting pair breaking detector @ ~Tc /10 2Δ Cooper Pairs Supercurrent Inductance iωL(Psky) h Quasiparticles Normal current Resistance R(Psky) Zs = R + iωL
MKID operation principle MKID: • Superconducting pair breaking detector • Superconducting film • Inside a resonance circuit • Capable of coupling to radiation Detector +LC filter in one structure Superconducting film Light Dark 2 L(Psky) R(Psky) 1
MKID response • Saturate at rad for pulse • We can re-tune for high loading Increasing Power Kinetic Inductance fraction Readout tone High loading Q factor Readout tone Volume lifetime A small, non-monotonic Increasing Power θ monotonic non-linear
MKID pulse response • Rise ~ few sec -> resonator ring time • Decay = quasiparticle lifetime qp • ~ 2 msec Al • ~ 50 sec Ta • ~ 50 - 1000 sec TiN Ta resonator Optical pulse
MKID types /4 CPW resonator Lumped Element Kinetic Inductance Detector
CPW resonator radiation coupling B. Mazinet. al., APL 89, 222507 (2006) • Yates et al., ArXiv Cond-Mat1107.4330, • Poster Mon - 028 J.Schlaerthet al., Poster Mon-16 mm sub-mm far-IR IR optical UV X-ray hard X-ray -ray (m) 10-3 10-4 10-5 10-6 10-7 10-8 10-9 10-10 10-11 10-12 E (eV) 10-3 10-2 10-1 1 101102 103 104 105106
CPW resonator radiation coupling B. Mazinet. al., APL 89, 222507 (2006) • Yates et al., ArXiv Cond-Mat1107.4330, • Poster Mon - 028 J.Schlaerthet al., Poster Mon-16 • 80% optical efficiency • Measured using photon noise mm sub-mm far-IR IR optical UV X-ray hard X-ray -ray (m) 10-3 10-4 10-5 10-6 10-7 10-8 10-9 10-10 10-11 10-12 E (eV) 10-3 10-2 10-1 1 101102 103 104 105106
LeKIDs radiation coupling Swenson et. al., APL 96, 263511 (2010) Moore, Presentation Poster Mon – 024, 025 Photons LeKID substrate Doyle et. al., JLTP 151, 530 (2008) mm sub-mm far-IR IR optical UV X-ray hard X-ray -ray (m) 10-3 10-4 10-5 10-6 10-7 10-8 10-9 10-10 10-11 10-12 E (eV) 10-3 10-2 10-1 1 101102 103 104 105106
MKID operation principle - Multiplexing MKID arrays Different length Different readout F0 Identical frequency band 1 feedline
MKID operation principle - Multiplexing MKID arrays 399 KIDs Q=6e5 350 GHz 175 KIDs Q=2e4 700 GHz
Amplitude Tone comb MKID Multiplexing • Create tones ~MHz • Upconvert Frequency • KIDs • modify • tones • Downconvert • Post-process
KID resonance single tone close to F0 unmasked F bin Readout F bins (masked) MKID Multiplexing • 1000 – 4000 pixels per coax cable pair and LNA (4K) • Digital electronics • DDC based for fast pulse analysis • 550 MHz, 256 KIDs,(Roach, UCSB) • Channelizer for slow varying signals • 2.5 GHz, 32768 bins, 1000-2000 KIDs, 50Hz dump rate (MPIfR, Bonn)
MKIDs fundamental limit: Generation –Recombination NEP # quasiparticles quasiparticle lifetime 100 nm Al 6 GHz /4 CPW resonator
MKIDs fundamental limit: Generation –Recombination noise Wilson and Prober, PRB 69, 094524 (2004) Quasiparticle number Noise Power spectral Density: Level Roll-off But ….. Generation – RecombinationNoise level Temperature independent!
MKIDs fundamental limit: Generation –Recombination noise • G-R noise observed in Al MKID resonator on sapphire • Can reach the fundamental limit • Allows quasiparticle counting Poster Mon - 010 Visseret al., PRL 116, 167004 (2011)
MKIDs fundamental limit: Generation –Recombination NEP 50 nm Al 6 GHz /4 CPW resonator on Saphire Saturation NEP=2.5∙10-19 W/Hz½
MKIDs fundamental limit – Photon noise limit • NEPMKID,Photon2= NEPphoton2 + NEPG-R2 • NEPMKID,Photon= 1.1 ∙ NEPphoton at 350 GHz forAl • NEPdetdepends on loading power as well! NEP=2.5∙10-19 W/Hz½ Photon noise limit
MKID materials • Aluminium • Long lifetime (4 msec) • Tc=1.2 K • High conductivity -> hard to match to free space • Bad intrinsic optical photon absorption efficiency • Small Kinetic Inductance -> small response • G-R limited performance demonstrated • TiN (2010) • Lifetime shorter (0.2 msec) • Tc=0.5 .. 4.3 K • High resistivity -> easy to match to free space • grey..gold -> reasonable optical photon absorption • large -> high response • Perfect for LeKIDs • LeDucet al., APL 97, 102509 (2010) • Vissers et al., APL 97, 232509 (2010)
δA δθ MKIDs excess noise • On resonance KIDs have excess noise • Fluctuations in the MKID resonance frequency • Converted to phase noise with respect to the resonance circle • KID NEP independent of Q factor
MKIDs excess noise • MKIDsexcessnoise = phasenoisewrt KID circle • NO dissipation (amplitude) component • Even down to levels below the quantum limit Using a HEMT amplifier T~4 K Gaoet al., APL 90, 102507 (2007) • Using a Josephson parametric amplifier • Gaoet al., APL 98, 222903 (2011) A A Vacuumnoise
MKIDs excess noise • Due to TLS interacting with E field -> only in C-section • In a thin surface layer Mitigation strategies • Use amplitude readout • Make the resonators C section wider • Use NbTiN + etch away substrate • Barendset al., • APL 97, 033507 (2010) • Gaoet al., APL 92, 221504 (2008) Narrow resonator Wide resonator
ARCONS – optical MKID detector array Palomar 200" • ~ 1000 pixels optical LeKIDs from low-Tc TiN 0.35 – 1.35 micron • 20-70% efficiency • Resolution R=16 for 254 nm B. A Mazin et al., Proc. of SPIE 773518, 773518P-1 (2010)
MUSIC – 4 color antenna coupled CPW MKID array CSO • ~ 500 pixels, 4 colors each using on chip filters • CSO end 2011 • Democam demonstrations done (2 runs) • P. Maloney et al., Proc. of SPIE 7741, 77410F (2010) • J.Schlaerthet al., Poster Mon-16
NIKA 2010 – quick datasheet 144 pixels LEKID (112 usable) 256 pixels «/4+antenna» (72 usable) One week day or night run at the 30-m IRAM telescope NEFD 37 mJys0.5 Design: Grenoble Fabrication: Grenoble Electronics: ROACH1 NEFD 400 mJys0.5 Design: SRON Fabrication: Delft Electronics: ROACH1 • NIKA 2010 : • dual-band (1.25 and 2mm) !! • improved (black) baffle • improved filtering • 35K equivalent stray-light • - frequency read-out « NIKA 2010 » has been the first really competitive KID-based instrument Alessandro Monfardini, Resonators 2011, Grenoble
Detector noise SKY noise Performance close to photon noise NEPopt 2.5·10-16 W/Hz0.5 photon noise Average LEKIDs detectors noise : 2Hz / Hz0.5 @ 1Hz (stable during the run) Alessandro Monfardini, Resonators 2011, Grenoble
NIKA – 30 min integration on IRC10420 • 22.2 ± 1.4 mJy and 104 ± 13 mJy @ 2mm and 1 mm • Low mJy sensitivity in 30' integration
Conclusions • The KIDs are coming! • Instruments become competitive in sub-mm/optical • Near photon noise limited instrument performance in sub-mm • Energy resolution ~15 in the optical • Readout systems up to 2.5 GHz / 1000-pixels available • True MUX factor of 1000-2000 close by • Few hundred demonstrated • Many new developments • On chip spectrometers (see talk Moseley and poster Deshima Mon-011) • CDMS detectors • Fluid dynamics measurement devices • He permittivity detectors • ………
Acknowledgements • People in the MKID community • Organisers of this workshop
NIKA 2010 – quick datasheet 144 pixels LEKID (112 usable) 256 pixels «/4+antenna» (72 usable) One week day or night run at the 30-m IRAM telescope BREAKING NEWS : New array 10 times more sensitive tested in the new NIKA 2011 cryostat (cryo-free) !! NEFD 37 mJys0.5 Design: Grenoble Fabrication: Grenoble Electronics: ROACH1 NEFD 400 mJys0.5 Design: SRON Fabrication: Delft Electronics: ROACH1 • NIKA 2010 : • dual-band (1.25 and 2mm) !! • improved (black) baffle • improved filtering • 35K equivalent stray-light • - frequency read-out « NIKA 2010 » has been the first really competitive KID-based instrument Alessandro Monfardini, Resonators 2011, Grenoble
MKIDs fundamental and practical limits: overview • MKIDs are detector and LC-filter in one • MKIDs response ~Q/V and is intrinsically non-linear • Calibration required • Enormous dynamic range • MKIDs can reach a MUX ratio of about 1000 - 4000 • MKIDs are limited fundamentally by G-R noise • This should not limit the NEP, but is does because Nqp≠ 0 at T=0 K • MKIDs under load will have a small G-R contribution above NEPPhoton • MKIDs suffer from F-noise due to TLS, which can be reduced or circumvented. It limits the NEP
MKID operation principle - Multiplexing 1 2 R1 L1 R2 L2 R3 L3 R4 L4
MKID operation principle - Multiplexing 128 KIDs 1mm
Al MKID TiN MKID
MKIDs fundamental limit: Generation –Recombination noise • We observe quasiparticle creationdueto the ~GHz readoutsignal • More readout power – more quasiparticles • Thiscreates a T independent quasiparticle density at T<150 mK • The result is a saturation in NEP at a readoutpopwerdependent level
MKID operation principle B(ωg) MKID • Superconducting pair breaking detector • Superconducting film • Inside a resonance circuit • Capable of coupling to radiation A(ωg) A θ Superconducting film Light Dark 2 L(Psky) R(Psky) 1
Outline • Introduction • MKIDs operation principle • Fundamental sensitivity limits • Excess noise • KID device types • Radiation coupling • Instruments • Conclusions