110 likes | 363 Views
A More Efficient Algorithm for Lattice Basis Reduction. C.P.SCHNORR Journal of algorithm 9,47-62(1988) 報告者 張圻毓. Outline. LLL Algorithm Compare Time. LLL Algorithm. Input : Linearly independent column vector f 1 ……f n Z n Output :
E N D
A More Efficient Algorithm for Lattice Basis Reduction C.P.SCHNORR Journal of algorithm 9,47-62(1988) 報告者 張圻毓
Outline • LLL Algorithm • Compare • Time
LLL Algorithm • Input : • Linearly independent column vector f1……fnZn • Output : • A reduced basis (b1……bn) of the lattice L=Σ1≦i ≦nZfiZn
LLL Algorithm • 1. for i =1,…,n dobi fi • compute the GSO G*,M Qn*n , i 2 • 2.while i ≦n do • 3. for j= i-1,i-2,…,1 do • 4. bi bi - 「μij」bj • update the GSO {replacement step}
LLL Algorithm • 5. if i>1 and • then exchange bi-1 and bi and update • the GSO , i i-1 • else i i+1 • 6. return b1,…,bn
Compare • LLL algorithm • (i)滿足 ,1≦j<i≦n • (ii)滿足 ,每一個基底元 • 素不會太小於前一個基底元素,一般δ為 • 3/4,則 所以會
Compare • New basis reduction algorithm • (i)滿足 ,1≦j<i≦n • (ii)滿足 ,則δ為 • 100/105大於原來數3/4, • (實際是1.538745)
Time • LLL algorithm • arithmetic operation on • -bit • New algorithm • arithmetic operation on • -bit • (B bounds the euclidean length of the input vectors,ie )