240 likes | 415 Views
Radio detection of UHE Neutrinos off the Moon. Olaf Scholten KVI, Groningen For the NuMoon collaboration. Principle of the measurement. Cosmic ray. Detection: Westerbork antennas. 10 7 km 2. 100MHz Radio waves. Radio emission Mechanisms. In air: Geo-synchotron radiation
E N D
Radio detection of UHE Neutrinos off the Moon Olaf Scholten KVI, Groningen For the NuMoon collaboration EPNT 06
Principle of the measurement Cosmic ray Detection: Westerbork antennas 107 km2 100MHz Radio waves EPNT 06
Radio emission Mechanisms • In air: Geo-synchotron radiation • Coherent emission in Atmosphere • LOPES • In matter: Askaryan effect • Coherent Čerenkov emission in • ice, salt, rock, …. • FORTE, RICE, SALSA, GLUE, EPNT 06
~2 m Cosmic ray ~10 cm shower Wave front Askaryan effect: Coherent Cherenkov emission • Leading cloud of electrons, v c Typical size of order 10cm Coherent Čerenkov for ν 2-5 GHz cos θc =1/n , θc=56o for ∞ shower length • Length of shower, L few m Important for angular spreading EPNT 06
Spreading around Cherenkov-cone Old : n=1.8 New : GHz MC calculations Sine profile L=1.7 m , E=1020 EPNT 06 O.S. etal., Astropart.Phys. 2006
Cosmic rays, Position on Moon Calculations for Ecr=4 1021 eV With decreasing ν : - increasing area - increasing probability ∫over surface Moon D ν-3 Partial Detection probability Normalized distance from center EPNT 06
Detection Limits, Cosmic rays Minimum Flux for detecting 1 count/100h Detection threshold = 500Jy • Decreasing ν: • Increasing threshold like ν-1 • Increase sensitivity like ν-3 EPNT 06
EM Shower (80%) ne e • Long EM shower • EM= 36 cm/sqrt(E/1015 eV) Shower length ~ 60 m (E/1019 eV)1/3 Hadronic Shower (20%) Relatively short Neutrino Showers above 1020 eV Landau Pomeranchuck Migdal effect J. Alvarez-Muniz, E. Zas, P.L. B434 (98)396, Phys.Rev.D62(2000)63001 Shorter showers give larger angular spread seminar
Detection Limits, Neutrinos Present results compared with that of GLUE experiment (@2.2GHz) Waxman-Bahcall EPNT 06
NuMoon Experiment @ WSRT Use Westerbork radio observatory • Advantages: • 117-175 MHz band • 12--25 m diameter dishes • 5 degree field of view • 40 M samples/sec (PuMa2) • Polarization information Measurements have started !! EPNT 06
NuMoon Experiment @ WSRT Use Westerbork radio observatory Simultaneously: 2 strips on the Moon @ 4 frequency bands EPNT 06
NuMoon Experiment @ LOFAR • Total collecting area 0.5 km2 • Cover whole moon, • Sensitivity 25 times better than WSRT. • Bands: • 30-80 MHz (600 Jy) • 115-240 MHz (20 Jy) Start: 2008 EPNT 06
Cosmic Rays Sensitive to flux beyond GKZ limit Detection threshold taken at Fdet= 25 Fnoise Δν=20 MHz , 4 bands ν=140 MHz WSRT: Fdet = 15,000 Jy LOFAR: Fdet = 500 Jy EPNT 06
Neutrinos WSRT, 500 hours 2 counts LOFAR, 30 days 40 counts Theoretical predictions: Waxman-Bahcall limit GZK induced flux Phys.Rev.D64(04)93010 Topological defects AstroPhys. J. 479(97)547 EPNT 06
Status experiment Observation time granted at WSRT - 100h per half year, total 500h - 60 h Observation already; Data are being analyzed, Part of LOFAR Key Science Program 2008 ? EPNT 06
Observations raw data time amplitude Frequency spectrum After Removing RFI 20 kHz, low resolution 1.5 kHz, high resolution EPNT 06
Future: SKA,LORD 1 year observation, LFB: 100-300 MHz MFB: 300-500 MHz EPNT 06
Conclusions • NuMoon @ WSRT: • 117-175 MHz band • Large field of view • Polarization information Future: NuMoon @ LOFAR Within 100 hours competitive Sensitivity to cosmic rays and neutrinos NuMoon NuMoon collaboration: KVI: Jose Bacelar, Ad van den Berg, O.S. Astron: Robert Braun, Ger de Bruyn, Heino Falcke, Ben Stappers, Richard Strom (also UvA,RUG,RU) EPNT 06
SKA-Hadrons EPNT 06
LORD efficiency for neutrinos EPNT 06
Angular spread EPNT 06
Additional Radio-absorbtion length= λ/ν[GHz]: default: λ=9 m Stopping power, default: X0 = 22.1 g/cm2 EPNT 06
sensitivity to top-soil EPNT 06
Vacuum 100 MHz θc Cosmic particle interaction • Particle hits Moon (radius=1700 km; area = 6π 106 km2): • protons interacts at surface • neutrinos inside • Transmission through Moon material λr= 9[m] / [GHz] = 4m (at 2.2 GHz) • Transmissivity across Moon surface – vacuum boundary 60 km @ 1021 eV 6 km @ 1024 eV Angular spread emitted power Δθc≈λ/ℓ Hadronic component: Δθc= 2.5 (3/) = 750 (at 0.1 GHz) Case: Shower @ 2.50 with surface EPNT 06