1 / 30

Pinning of Fermionic Occupation Numbers

Pinning of Fermionic Occupation Numbers. Christian Schilling ETH Zürich. in collaboration with M.Christandl , D.Ebler , D.Gross. Phys. Rev . Lett . 110 , 040404 (2013). Outline. Motivation Generalized Pauli Constraints Application to Physics Pinning Analysis

fay
Download Presentation

Pinning of Fermionic Occupation Numbers

An Image/Link below is provided (as is) to download presentation Download Policy: Content on the Website is provided to you AS IS for your information and personal use and may not be sold / licensed / shared on other websites without getting consent from its author. Content is provided to you AS IS for your information and personal use only. Download presentation by click this link. While downloading, if for some reason you are not able to download a presentation, the publisher may have deleted the file from their server. During download, if you can't get a presentation, the file might be deleted by the publisher.

E N D

Presentation Transcript


  1. PinningofFermionicOccupation Numbers Christian Schilling ETH Zürich in collaborationwith • M.Christandl, D.Ebler,D.Gross Phys. Rev. Lett. 110, 040404 (2013)

  2. Outline • Motivation • Generalized Pauli Constraints • ApplicationtoPhysics • Pinning Analysis • PhysicalRelevanceofPinning

  3. 1) Motivation Pauli’sexclusionprinciple (1925): `notwoidenticalfermions in the same quantumstate’ mathematically: (quasi-) pinnedby (quasi-) pinnedby relevant when Aufbau principleforatoms

  4. strengthenedby Dirac & Heisenberg in (1926): `quantumstatesofidentical fermionsareantisymmetric’ implicationsforoccupationnumbers ? furtherconstraintsbeyond butonly relevant if (quasi-) pinned (?)

  5. mathematicalobjects ? N-fermion states partial trace 1-particle reduceddensityoperator naturaloccupation numbers • translateantisymmetryof • to 1-particle picture

  6. 2) Generalized Pauli Constraints describethisset Q:Which1-RDO arepossible? (Fermionic Quantum Marginal Problem) A: unitaryequivalence: onlynaturaloccupationnumbersrelevant

  7. Polytope 1 1 0 [A.Klyachko., CMP 282, p287-322, 2008] [A.Klyachko, J.Phys 36, p72-86, 2006] Pauli exclusionprinciple

  8. polytope = intersectionof finitelymany half spaces facet: half space:

  9. Example: N = 3 & d= 6 [Borland&Dennis, J.Phys. B, 5,1, 1972] [Ruskai, Phys. Rev. A, 40,45, 2007]

  10. 3) ApplicationtoPhysics orhere? (pinning) Position of relevant states (e.g. groundstate) ? 1 here? point on boundary : 1 0 kinematicalconstraints decay impossible generalizationof:

  11. N non-interactingfermions: with 1-particle picture: N-particlepicture: ( ) ( ) effectively 1-particle problem withsolution

  12. Slater determinants Pauli exclusionprincipleconstraints 1 exactlypinned! 1 0

  13. requirementsfor non-trivial model? N identicalfermionswithcouplingparameter analyticalsolvable: depending on

  14. Hamiltonian: diagonalizationof lengthscales:

  15. Now: Fermions restrictto groundstate: [Z.Wang et al., arXiv 1108.1607, 2011] if non-interacting

  16. propertiesof : i.e. on dependsonly on fromnow on : non-trivial duality weak-interacting

  17. `Boltzmann distributionlaw’: Thanksto Jürg Fröhlich hierarchy:

  18. 4) Pinning Analysis toodifficult/ not knownyet instead: check w.r.t

  19. relevant aslong as lowerbound on pinningorder

  20. relevant aslong as quasi-pinning

  21. moreover : quasi-pinnigonlyforweakinteraction ? No!: larger ? - quasi-pinning posterby Daniel Ebler excitations ? firstfewstill quasi-pinned weakerwithincreasingexcitation quasi-pinning a groundstateeffect !?

  22. 5) PhysicalRelevanceofPinning saturatedby : Implicationforcorresponding ? PhysicalRelevanceofPinning ?

  23. generalizationof: stable:

  24. SelectionRule:

  25. Example: dimension Pinningof

  26. Application: ImprovementofHartree-Fock approximateunknowngroundstate Hartree-Fock muchbetter:

  27. Conclusions • antisymmetryof • translatedto1-particle picture Generalized Pauli constraints studyoffermion – modelwithcoupling Pauli constraintspinneduptocorrections Generalized Pauli constraintspinneduptocorrections Pinningisphysically relevant e.g. improveHartree-Fock FermionicGround States simpler thanappreciated (?)

  28. Outlook genericfor: Hubbard model Quantum Chemistry: Atoms HOMO- LUMO- gap Physical & mathematical Intuition forPinning StronglycorrelatedFermions AntisymmetryEnergyMinimization

  29. Thankyou!

More Related