300 likes | 459 Views
Pinning of Fermionic Occupation Numbers. Christian Schilling ETH Zürich. in collaboration with M.Christandl , D.Ebler , D.Gross. Phys. Rev . Lett . 110 , 040404 (2013). Outline. Motivation Generalized Pauli Constraints Application to Physics Pinning Analysis
E N D
PinningofFermionicOccupation Numbers Christian Schilling ETH Zürich in collaborationwith • M.Christandl, D.Ebler,D.Gross Phys. Rev. Lett. 110, 040404 (2013)
Outline • Motivation • Generalized Pauli Constraints • ApplicationtoPhysics • Pinning Analysis • PhysicalRelevanceofPinning
1) Motivation Pauli’sexclusionprinciple (1925): `notwoidenticalfermions in the same quantumstate’ mathematically: (quasi-) pinnedby (quasi-) pinnedby relevant when Aufbau principleforatoms
strengthenedby Dirac & Heisenberg in (1926): `quantumstatesofidentical fermionsareantisymmetric’ implicationsforoccupationnumbers ? furtherconstraintsbeyond butonly relevant if (quasi-) pinned (?)
mathematicalobjects ? N-fermion states partial trace 1-particle reduceddensityoperator naturaloccupation numbers • translateantisymmetryof • to 1-particle picture
2) Generalized Pauli Constraints describethisset Q:Which1-RDO arepossible? (Fermionic Quantum Marginal Problem) A: unitaryequivalence: onlynaturaloccupationnumbersrelevant
Polytope 1 1 0 [A.Klyachko., CMP 282, p287-322, 2008] [A.Klyachko, J.Phys 36, p72-86, 2006] Pauli exclusionprinciple
polytope = intersectionof finitelymany half spaces facet: half space:
Example: N = 3 & d= 6 [Borland&Dennis, J.Phys. B, 5,1, 1972] [Ruskai, Phys. Rev. A, 40,45, 2007]
3) ApplicationtoPhysics orhere? (pinning) Position of relevant states (e.g. groundstate) ? 1 here? point on boundary : 1 0 kinematicalconstraints decay impossible generalizationof:
N non-interactingfermions: with 1-particle picture: N-particlepicture: ( ) ( ) effectively 1-particle problem withsolution
Slater determinants Pauli exclusionprincipleconstraints 1 exactlypinned! 1 0
requirementsfor non-trivial model? N identicalfermionswithcouplingparameter analyticalsolvable: depending on
Hamiltonian: diagonalizationof lengthscales:
Now: Fermions restrictto groundstate: [Z.Wang et al., arXiv 1108.1607, 2011] if non-interacting
propertiesof : i.e. on dependsonly on fromnow on : non-trivial duality weak-interacting
`Boltzmann distributionlaw’: Thanksto Jürg Fröhlich hierarchy:
4) Pinning Analysis toodifficult/ not knownyet instead: check w.r.t
relevant aslong as lowerbound on pinningorder
relevant aslong as quasi-pinning
moreover : quasi-pinnigonlyforweakinteraction ? No!: larger ? - quasi-pinning posterby Daniel Ebler excitations ? firstfewstill quasi-pinned weakerwithincreasingexcitation quasi-pinning a groundstateeffect !?
5) PhysicalRelevanceofPinning saturatedby : Implicationforcorresponding ? PhysicalRelevanceofPinning ?
generalizationof: stable:
Example: dimension Pinningof
Application: ImprovementofHartree-Fock approximateunknowngroundstate Hartree-Fock muchbetter:
Conclusions • antisymmetryof • translatedto1-particle picture Generalized Pauli constraints studyoffermion – modelwithcoupling Pauli constraintspinneduptocorrections Generalized Pauli constraintspinneduptocorrections Pinningisphysically relevant e.g. improveHartree-Fock FermionicGround States simpler thanappreciated (?)
Outlook genericfor: Hubbard model Quantum Chemistry: Atoms HOMO- LUMO- gap Physical & mathematical Intuition forPinning StronglycorrelatedFermions AntisymmetryEnergyMinimization