1 / 24

指導老師:林燦煌 博士 學生 : 劉芳怡

A problem generator-solver heuristic for vehicle routing with soft time windows. 指導老師:林燦煌 博士 學生 : 劉芳怡. 目的. 考慮軟性時間窗的車輛排程問題 特別重要的是允許決策者 (decision-makers) 從 logistics and marketing-sales 兩邊,藉由適當的 contract negotiations 在客戶訂單的運送時間上,來決定最小的車隊 size 。 結合 nearest-neighbor 與 problem generator.

fayola
Download Presentation

指導老師:林燦煌 博士 學生 : 劉芳怡

An Image/Link below is provided (as is) to download presentation Download Policy: Content on the Website is provided to you AS IS for your information and personal use and may not be sold / licensed / shared on other websites without getting consent from its author. Content is provided to you AS IS for your information and personal use only. Download presentation by click this link. While downloading, if for some reason you are not able to download a presentation, the publisher may have deleted the file from their server. During download, if you can't get a presentation, the file might be deleted by the publisher.

E N D

Presentation Transcript


  1. A problem generator-solver heuristic for vehicle routing with soft time windows 指導老師:林燦煌 博士 學生:劉芳怡

  2. 目的 • 考慮軟性時間窗的車輛排程問題 • 特別重要的是允許決策者(decision-makers)從logistics and marketing-sales兩邊,藉由適當的contract negotiations在客戶訂單的運送時間上,來決定最小的車隊size。 • 結合nearest-neighbor與problem generator

  3. Problem formulation • 設定兩種群組的變數。 • 第一:the sequence in which vehicles visit customers

  4. 第二:當vehicle k 開始active就設為1,且至少要拜訪一個客戶。

  5. (Penalty function) 1.cei、cli is the unit penalty。 2.每一客戶i的開始服務時間。

  6. impose a maximum limit wtmax on the waiting time of a vehicle at any customer, to contain possible high levels of waiting times before customer service begins • aj:customer j開始服務時間。 • ai:customer i開始服務時間。 • si:service time • tij:travel time :if customer j follows customer i in the sequence visited by vehicle k

  7. • Overall objective function for the VRPSTW include three components: route cost, vehicle activation cost and time window violation cost. tcij:customer i to customer j的距離乘上travel time tij。 :if customer j follows customer i in the sequence visited by vehicle k。 wk:車輛k活動的成本。 zk:if vehicle k is active。 Pi:customer i time window violation cost。

  8. The effect of time window violations can be expressed in terms of the total average time window deviation per customer • The measure of (6) is critical since it provides an indication of the size of the time window violations.

  9. Solution method • 利用a problem instance and a solution engine,來解VRPSTW問題。 • Problem generator--重複產生軟性時間窗的案例,產生不同客戶數的軟性時間窗案例及可允許的最大時間窗違反。 • Solution engine--利用nearest-neighbor heuristic(NNH)結合penalty function,來當作客戶選擇的標準。

  10. The instance generator engine • the generator selects customer i that has the minimum violation,which is less than a tightness coefficient ε. • the generator engine allows violations for the first┌ nλ/100┐customers and selects customer j, which satisfies the property below, for time window fixing:

  11. The solution engine • 在選擇customer j時有一個最低成本Cj。 • The cost Cjcan be mathematically expressed as: • bd,ba,bu,bp是權重,定義為所有選擇標準在每一metric的相關貢獻度。 • bd+ba+bu+bp=1 • bd, ba,bu, bp≧0. • NNH在implementation時,使用各種bd,ba,bu,bp值下去實驗。

  12. define the last three sub-metrics of (8) as follows: 顧客j可被服務的最晚時間

  13. The heuristic • Algorithm PGSH(problem generator solver heuristic)

  14. 使用一個參數γ來增加λ值

  15. Computational results • Three metrics for each data set are reported: (a) the number of vehicles reached by PGSH (problem generator solver heuristic) (b) the percentage of non-violated time windows (TW) for each vehicle fleet size (c) the total average violation of time windows for each vehicle fleet size(TATWD).

  16. 7%的時間窗違反只要16輛車。 最佳解的17輛車是沒有時間窗違反。

  17. 沒有違反時間窗的百分比 車輛數 從後面五個客戶看來PGSH有明顯的達到最佳解,且沒有違反時間窗。

  18. The percentage of non-violated time windows 72 55 ε PGSH Balakrishnan 圖上橫座標55、72分別是文獻中Balakrishnan在16、17vehicles的最好解 如果不管ε值,可以觀察到PGSH的解優於Balakrishnan

  19. Original heuristic of Baker and Scaffer for hard case =客戶需求總合/車的容量

  20. 結論 • 本篇方法解的engine,是建立在nearest-neighbor heuristic,適當的應用在當時間窗違反(time window violations)時,會有一個懲罰值(penalty)。 • 這特別是為了fleet planning and contract negotiations,因為他可以允許決策者做出最好的權衡在時間窗擴張和車輛數之間。

More Related