250 likes | 360 Views
Summary: Galactic hot ISM. No significant X-ray absorption beyond the LMC (~< 10 19 cm -2 , assuming the solar abundance) A thick Galactic disk with a scale height 1-2 kpc, ~ the values of OVI absorbers and free electrons O abundance ~ solar or higher
E N D
Summary: Galactic hot ISM • No significant X-ray absorption beyond the LMC (~< 1019 cm-2, assuming the solar abundance) • A thick Galactic disk with a scale height 1-2 kpc, ~ the values of OVI absorbers and free electrons • O abundance ~ solar or higher • Mean T ~ 106.3+-0.2 K, ~ 106.1 K at solar neighborhood • Large nonthermal v dispersion, especially at the GC • High volume filling factor (> 0.8) within |z| < 1 kpc
Missing Energy” and “Over-cooling” Problems in Galaxies and Possible Solutions
External Perspective: NGC 3556 (Sc) • Active star forming • Hot gas scale height ~ 2 kpc • Lx ~ 1% of SN mech. Energy input Red – optical Green – 0.3-1.5 keV band Blue – 1.5-7 keV band Wang et al. 2004
NGC 2841 (Sb) Red: optical Blue: 0.3-1.5 keV diffuse emission
Wang (2004) Red – optical Green – 0.3-1.5 keV band Blue – 1.5-7 keV band NGC 4565 (Sb) Very low specific SFR No sign for any outflows from the disk in radio and optical William McLaughlin (ARGO Cooperative Observatory)
NGC 4594 (Sa) H ring Red: optical Green: 0.3-1.5 keV Blue: 1.5-7 keV
NGC 4631 NGC 4594:X-ray spectra Point source disk Outer bulge • Average T ~ 6 x 106 K • Strong Fe –L complex • Lx ~ 4 x 1039 erg/s, or ~ 2% of the energy input from Type Ia SNe alone • Not much cool gas to hide or convert the SN energy • Mass and metals are also missing! • Mass input rate of evolved stars • ~ 1.3 Msun/yr • Each Type Ia SN 0.7 Msun Fe Inner bulge
Galaxy formation simulations vs. observations NGC 4594 NGC 4565 NGC 4594 NGC 4565 Toft et al. (2003)
No evidence for large-scale X-ray-emitting galactic halos Li et al. (2006)
Summary: Nearby galaxies • Good News • At least two components of diffuse hot gas: • Disk – driven by massive star formation • Bulge – heated primarily by Type-Ia SNe • Characteristic extent and temperature similar to the Galactic values • Bad news • Missing stellar feedback, at least in early-type spirals. • Little evidence for X-ray emission or absorption from IGM accretion --- maybe good news for solving the over-cooling problem. Are these problems related?
Feedback • Radiation • AGNs • Supernovae • Core-collapsed SNe • Type 1a
Bulge wind model • Spherical, steady, and adiabatic • NFW Dark matter halo + stellar bulge • Energy and mass input follows the stellar light distribution • CIE plasma emission • Implemented in XSPEC for both projected spectral and radial surface brightness analyses Li & Wang 2006
Data vs model Consistent with the expected total mass loss and SN rates as well as the Fe abundance of ~ 4 x solar!
The best-fit model density and temperature profiles of the bulge wind
3-D hydro simulations • Goals • To characterize the density, temperature, and metal abundance structures, the heating and cooling processes, and the kinematics of the HISM • To calibrate the 1-D model • Hydro simulations with metal particle tracers • Parallel, adaptive mesh refinement FLASH code • Whole galactic bulge simulation with the finest refinement in one octant down to 6 pc • Stellar mass injection and SNe, following stellar light • Realistic gravitational potential of the bulge and the dark matter halo
Galactic bulge simulation: density • 3x3x3 kpc3 box • SN rate ~ 4x10-4 /yr • Mass injection rate ~0.03 Msun/yr • Logarithmic scale • Statistical steady state • ~ adiabatic Tang et al. 2005
ROSAT X-ray All-sky Survey Red – 1/4 keV band Green – 3/4 keV band Blue – 1.5 keV band
Conclusions and implications • Large inhomogeneity is expected • particularly in the hot Fe distribution • enhanced emission at both low and high temperatures (compared to the 1-D solution) • SNe generate waves in the HISM • Energy not dissipated locally or in swept-up shells • Maybe eventually damped by cool gas or in the galactic hot halo • Galactic wind not necessary • Possible solution to the over-cooling problem of galaxy formation
Galactic bulge simulation: Fe • Fe-rich ejecta dominate the high-T emission • Not well-mixed with the ambient medium • May cool too fast to be mixed with the global hot ISM
Non-uniformity effects High Res. 1-D Low Res. 1-D Log(T(K))