1 / 21

Computing our example

Computing our example. Step 1: compute sums of squares Recall our data…. 1. 2. N = 15. Computing our example. Step 1: compute sums of squares SS total = [10 2 + 13 2 + 5 2 + 9 2 + 8 2 + 6 2 + 8 2 + 10 2 + 4 2 +12 2 + 1 2 + 3 2 + 4 2 + 5 2 + 2 2 ] -

Download Presentation

Computing our example

An Image/Link below is provided (as is) to download presentation Download Policy: Content on the Website is provided to you AS IS for your information and personal use and may not be sold / licensed / shared on other websites without getting consent from its author. Content is provided to you AS IS for your information and personal use only. Download presentation by click this link. While downloading, if for some reason you are not able to download a presentation, the publisher may have deleted the file from their server. During download, if you can't get a presentation, the file might be deleted by the publisher.

E N D

Presentation Transcript


  1. Computing our example • Step 1: compute sums of squares • Recall our data… 1 2 N = 15

  2. Computing our example • Step 1: compute sums of squares • SStotal = [102 + 132 + 52 + 92 + 82 + 62 + 82 + 102 + 42 +122 + 12 + 32 + 42 + 52 + 22] - = 854 – 666.67 = 187.33 1

  3. Computing our example • Step 1: compute sums of squares • SSgroup = 27.14 + 8.84 + 67.34= 103.32 1 2

  4. Computing our example • Step 1: compute sums of squares • SSerror • =SStotal-SSgroup = 187.33 – 103.32 = 84.01 • So… • SSgroup = 103.32 • SSerror = 84.01 • Sstotal = 187.33 1

  5. Computing our example • Step 2: Compute df • df group = k – 1 = 3 – 1 = 2 • dferror = N – k = 15 – 3 = 12 • df total = N – 1 = 15 – 1 = 14 1

  6. Computing our example • Step 3: Compute Mean Squares (MS) 1

  7. Computing our example • Step 4: Put all the info in the ANOVA table: 1

  8. Computing our example • Step 5: Compare Fobs to Fcritical: • Fobs = 7.38 • Fcritical = …need to obtain Fcrit from tables for F • df will be (numerator, denominator) in F-ratio • df = 2, 12 • F (2,12, α = .05) = 3.89 • Reject H0 (Fobs > Fcritical) 1 2

  9. 1-way ANOVA in SPSS Data: One column for the grouping variable (IV: group in this case), one for the measure (DV: fitness in this case) Data: Note grouping variable has 3 levels (goes from 1 to 3) 1

  10. 1-way ANOVA in SPSS Procedure: Choose the appropriate procedure, and… 1

  11. 1-way ANOVA in SPSS Dialog box: slide the variables… 1 …into the appropriate places

  12. n – k = 15 - 3 = 12 k-1 = 3-1 = 2 n-1 = 15-1 = 14 Here we see the between and within sources of variance Here are the SD’s (here expressed as the “mean square” – that’s the average sum of squares, which is after all a ‘standardized’ deviation) 1-way ANOVA in SPSS 1 Result!

  13. Significant result…now what? 1 • Follow-up tests • ONLY compute after a significant ANOVA • Like a collection of little t-tests • But they control overall type 1 error comparatively well • They do not have as much power as the omnibus test (the ANOVA) – so you might get a significant ANOVA & no sig. Follow-up • Purpose is to identify the locus of the effect (what means are different, exactly?) 2

  14. Significant result…now what? • Follow-up tests – most common… • Tukey’s HSD (honestly sig. diff.) • Formula: • But it’s easier to use SPSS… 1

  15. Follow-ups to ANOVA in SPSS 1 2 Choose “post-hoc” test (meaning ‘after this’) Check the appropriate box for the HSD (Tukey, not Tukey’s b)

  16. Sig. levels between pairs of groups Groups that do not differ Follow-ups to ANOVA in SPSS 2 And one that does (from the other 2) 1 3

  17. Follow-ups to ANOVA in SPSS So “TV Movie” differs from both “Soap Opera” and “infomercial” , significantly 1 “Soap Operas” and “infomercials” do not differ significantly

  18. Assumptions to test in One-Way • Samples should be independent (as with independent t-test – does not mean perfectly uncorrelated) • Each of the k populations should be normal (important only when samples are small…if there’s a problem, can use Kruskal-Wallis test) • The k samples should have equal variances (this is the homogeneity of variance assumption, and we’ll look at it shortly…violations are important mostly with small samples and unequal n’s) 1

  19. Homogeneity of variance - SPSS 1. Click on the ‘options’ button 2. Choose homogeneity of variance 3. Click continue

  20. Homogeneity of variance - SPSS Homogeneity test output As you can see, no problems here. The test has to be significant for there to be a violation

  21. Interpret output • “The amount of aggression arising from watching TV changed according to the type of program watched, F(2,12) = 7.38, p .05. Tukey’s HSD follow-up tests showed that those watching violent movies (M = 3) experienced less aggression than those watching soap operas (M = 8) or infomercials (M = 9). There was no difference in aggression level between those who watched soap operas and those who watched infomercials.” 1

More Related