370 likes | 411 Views
This presentation explores the utilization of Schwinger-Dyson Equations in hadron physics and QCD to understand concepts like QCD confinement, strong coupling, asymptotic freedom, and pQCD. The discussion extends to QED Bound State Equations and P.V. Axial Ward Identity in studying effective interaction strength, quark mass functions, chiral symmetry breaking, and more. Examining the SDE/BSE approach at ANL/KSU, the focus is on pion/vector mesons, electromagnetic form factors, and the behavior of quarks in different energy ranges. Gauge invariance, multiplicative renormalizability, and the bridging of SDE/BSE from theory to experiment are also highlighted.
E N D
Schwinger-Dyson approach to hadron physics Goecke, Fischer & Williams
QCD confinement strong coupling 1 strong QCD 0 -15 0 10 r (m) asymptotic freedom strong QCD pQCD
Schwinger-Dyson Equations . . . . QED
Bound State Equations Schwinger-Dyson Equations P V Axial Ward Identity QCD
effective interaction strength fp , mp Maris & Tandy p2 GeV2 10-3 103
quark mass function SB < qq >0 ~ - (240 MeV)3 chiral m 0 = s > 1 Williams, Fischer, P Maris & Roberts
SDE/BSE – ANL/KSU v MV (GeV) pion/vector mesons CP-PACS q 2 MP (GeV2) q P V
electromagnetic formfactors constant mass quark propagator running mass 103 10-3 p2 (GeV)2 q q q q q qq N*
Pion electromagnetic formfactor Maris, Tandy
Pion electromagnetic formfactor g* p+ n p Further extend Fp(Q2) w/ 12 GeV • Measure F up to 6 (GeV/c)2 to probe onset of pQCD • +/- measurements to test t-channel dominance of L • Q2 = 0.30 (GeV/c)2 close to pion pole to compare to +e elastic
Pion electromagnetic formfactor g* p+ n p Further extend Fp(Q2) w/ 12 GeV • Measure F up to 6 (GeV/c)2 to probe onset of pQCD • +/- measurements to test t-channel dominance of L • Q2 = 0.30 (GeV/c)2 close to pion pole to compare to +e elastic
effective interaction strength Qin, Chang, Liu, Roberts, Wilson p2 GeV2 10-3 103
effective interaction strength constant mass running mass p2 GeV2 10-3 103
Schwinger-Dyson Equations • remove divergences (eg. quadratic div.) • (ii) ensure correct gauge dependence (eg. transversality of boson) . . . . Consistent truncation Gauge Invariance & Multiplicative Renormalizibility QED
Gauge Invariance Fermion propagator m -1 -1 = k p k p q m - -1 -1 wavefunction renormalisation mass function
Gauge Invariance m m q -1 -1 = k p k p k p q m qm 0 1,2,..,8 Ward-Green-Takahashi
Gauge Invariance m m q -1 -1 = k p k p k p q m Ball & Chiu Ward-Green-Takahashi Ball & Chiu
Gauge Invariance m m q -1 -1 = k p k p k p q m Ward-Green-Takahashi Goecke, Fischer & Williams step I
Testing for gauge invariance invariant not invariant little invariant
Fermion propagator gm gm F(p) a = 0.5 F(p) a = 1 - -1 -1 p2/L2 wavefunction renormalisation CP BC CP mass function BC
Fermion propagator gm CP R BC p2/L2 - -1 -1 wavefunction renormalisation mass function
Schwinger-Dyson Equations QED . . . . Gauge Invariance & Multiplicative Renormalizibility Kizilersu & P
Transverse components at O (a) Kizilersu, Reenders & P Davydychev
Transverse vertex Kizilersu & P R. Williams, K, Sizer, P & A.G. Williams
Unquenched Massless renormalised at m2 < L2: a=0.2, z : varying Kizilersu et al
Unquenched Massless renormalised at m2 < L2: a=0.2, z : varying Kizilersu et al
Light by Light gauge invariance is NOT optional
Light by Light gauge invariance is NOT optional
Fermion propagator mass gauge dependent = cutoff
Gauge Invariance and Multiplicative Renormalizibility -1 -1 - CP vertex mass almostgauge independent
Slavnov-Taylor Identity axial gauges BBZ Schwinger-Dyson Equations QCD
Schwinger-Dyson Equations Slavnov-Taylor Identity QCD covariant gauges
Building bridges SDE/BSE in the continuum
Building bridges SDE/BSE in the continuum connects the lattice to the continuum
Building bridges SDE/BSE in the continuum connects theory to experiment