970 likes | 1.22k Views
12 蛋白质的生物合成(翻译) Chapter 12 Protein Biosynthesis , Translation. 本章重点与难点 重点:了解密码子的概念与特点; RNA 在蛋白质生物合成中的作用;蛋白质合成过程及合成后加工与运输。 难点:核糖体的结构;蛋白质合成过程;肽链合成后的加工与定向运输;蛋白质生物合成的干扰和抑制。. 什么样的碱基序列决定什么样的氨基酸序列呢?. DNA: ATGCATGCATGC. 如何实现碱基序列到氨基酸序列的转变?. RNA: AUGCAUGCAUGC.
E N D
12 蛋白质的生物合成(翻译)Chapter 12 Protein Biosynthesis,Translation
本章重点与难点 重点:了解密码子的概念与特点;RNA在蛋白质生物合成中的作用;蛋白质合成过程及合成后加工与运输。 难点:核糖体的结构;蛋白质合成过程;肽链合成后的加工与定向运输;蛋白质生物合成的干扰和抑制。
什么样的碱基序列决定什么样的氨基酸序列呢? DNA: ATGCATGCATGC 如何实现碱基序列到氨基酸序列的转变? RNA: AUGCAUGCAUGC PROTEIN: aa1 aa2 aa3 aa4
蛋白质的生物合成,即翻译或表达,就是将核酸中由 4 种核苷酸序列编码的遗传信息,通过遗传密码破译的方式解读为蛋白质一级结构中20种氨基酸的排列顺序 。
参与蛋白质生物合成的物质包括 • 三种RNA • mRNA(作为蛋白质生物合成的模板,决定多肽链中氨基酸的排列顺序) • rRNA(蛋白体生物合成的场所) • tRNA(搬运氨基酸的工具) • 20种氨基酸(AA)作为原料 • 酶及众多蛋白因子,如IF、eIF • ATP、GTP、无机离子
一、翻译模板mRNA及遗传密码 • mRNA是遗传信息的携带者 • 遗传学将编码一个蛋白质或多肽的遗传单位称为顺反子(cistron)。 • 原核细胞中数个结构基因常串联为一个转录单位,转录生成的mRNA可编码几种功能相关的蛋白质,为多顺反子(polycistron)。 • 真核mRNA只编码一种蛋白质,为单顺反子(single cistron)。
3 5 PPP 蛋白质 3 mG - 5 PPP 蛋白质 非编码序列 核蛋白体结合位点 编码序列 起始密码子 终止密码子 原核生物的多顺反子 真核生物的单顺反子
我们已经知道,多肽上氨基酸的排列次序最终是由DNA上核苷酸的排列次序决定的,而直接决定多肽上氨基酸次序的是mRNA上的核苷酸的排列次序,不论是DNA还是mRNA都是由4种核苷酸构成,而组成多肽的氨基酸有20种,显然,必须是几个核苷酸的组合编码一个氨基酸才能应付局面.用数学方法很容易算出,如果每2个核苷酸编码1个氨基酸,那么4种核苷酸只有16中编码方式,显然不行,如果每3个核苷酸编码1个氨基酸,则有64种编码方式,很理想,如果4对1则有256种,太没必要也太复杂了,时刻记住生物体是一个最理想的体系.而且科学家们用生物化学实验已经证实是3个碱基编码1个氨基酸,称为三联体密码或密码子。我们已经知道,多肽上氨基酸的排列次序最终是由DNA上核苷酸的排列次序决定的,而直接决定多肽上氨基酸次序的是mRNA上的核苷酸的排列次序,不论是DNA还是mRNA都是由4种核苷酸构成,而组成多肽的氨基酸有20种,显然,必须是几个核苷酸的组合编码一个氨基酸才能应付局面.用数学方法很容易算出,如果每2个核苷酸编码1个氨基酸,那么4种核苷酸只有16中编码方式,显然不行,如果每3个核苷酸编码1个氨基酸,则有64种编码方式,很理想,如果4对1则有256种,太没必要也太复杂了,时刻记住生物体是一个最理想的体系.而且科学家们用生物化学实验已经证实是3个碱基编码1个氨基酸,称为三联体密码或密码子。
遗传密码的破译 在遗传密码的破译中,美国科学家M.W.Nirenberg等人做出了重要贡献 ,并于1968年获得了诺贝尔生理医学奖. 早在1961年,M.W.Nirenberg等人在大肠杆菌的无细胞体系中外加poly(U)模板、20种标记的氨基酸,经保温后得到了多聚phe-phe-phe,于是推测UUU编码phe。利用同样的方法得到CCC编码pro,GGG编码gly,AAA编码lys。 如果利用poly(UC),则得到多聚Ser-Leu-Ser-Leu,推测UCU编码Ser,CUC编码Leu,因为poly(UC)有两种读码方式:UCU——CUC和CUC——UCU 采用这种方式,到1965年就全部破译了64组密码子。
mRNA上存在遗传密码 mRNA分子上从5至3方向,由AUG开始,每3个核苷酸为一组,决定肽链上某一个氨基酸或蛋白质合成的起始、终止信号,称为三联体密码(triplet coden)。在64个密码子中有61个编码氨基酸,3个不编码任何氨基酸而起肽链合成的终止作用,称为终止密码子,它们是UAG、UAA、UGA,密码子AUG(编码Met)又称起始密码子。 起始密码(initiation coden): AUG ,GUG 终止密码(termination coden):UAA,UAG,UGA
从mRNA 5端起始密码子AUG到3端终止密码子之间的核苷酸序列,各个三联体密码连续排列编码一个蛋白质多肽链,称为开放阅读框架(open reading frame, ORF)。
遗传密码的特点 1. 连续性(commaless) 编码蛋白质氨基酸序列的各个三联体密码连续阅读,密码间既无间断也无交叉。
2. 简并性(degeneracy) 遗传密码共有64个,其中61个密码子对应20中氨基酸,除色氨酸和甲硫氨酸仅有一个密码子外,其余氨基酸有2、3、4个或多至6个三联体为其编码。
3. 通用性(universal) • 蛋白质生物合成的整套密码,从原核生物到人类都通用。 • 已发现少数例外,如动物细胞的线粒体、植物细胞的叶绿体。 • 密码的通用性进一步证明各种生物进化自同一祖先。
4. 摆动性(wobble) 转运氨基酸的tRNA的反密码需要通过碱基互补与mRNA上的遗传密码反向配对结合,但反密码与密码间不严格遵守常见的碱基配对规律,称为摆动配对。 5、方向性 即解读方向为5′→ 3′
摆动配对 U
反密码对密码的识别,通常也是根据碱基互补原则,即A—U,G—C配对。但反密码的第一个核苷酸与第三核苷酸之间的配对,并不严格遵循碱基互补原则。如反密码第一个核苷酸为Ⅰ,则可与A、U或C配对,如为U,则可与A或G配对,这种配对称为不稳定配对。反密码对密码的识别,通常也是根据碱基互补原则,即A—U,G—C配对。但反密码的第一个核苷酸与第三核苷酸之间的配对,并不严格遵循碱基互补原则。如反密码第一个核苷酸为Ⅰ,则可与A、U或C配对,如为U,则可与A或G配对,这种配对称为不稳定配对。
大肠杆菌核蛋白体的空间结构为一椭圆球体,其30S亚基呈哑铃状,50S亚基带有三角,中间凹陷形成空穴,将30S小亚基抱住,两亚基的结合面为蛋白质生物合成的场所。大肠杆菌核蛋白体的空间结构为一椭圆球体,其30S亚基呈哑铃状,50S亚基带有三角,中间凹陷形成空穴,将30S小亚基抱住,两亚基的结合面为蛋白质生物合成的场所。
原核生物翻译过程中核蛋白体结构模式: P位:肽酰位 (peptidyl site) A位:氨基酰位 (aminoacyl site) E位:排出位 (exit site)
核糖体包括如下部位: 容纳mRNA的部位 结合氨基酰tRNA的部位(A-位点) 结合肽酰tRNA的部位(P-位点) 形成肽键的部位(转肽酶中心)
核蛋白体的大、小亚基分别有不同的功能: 1.小亚基:可与mRNA、GTP和起动tRNA结合。 2.大亚基: (1)具有两个不同的tRNA结合点。A位(右)——受位或氨酰基位,可与新进入的氨基酰tRNA结合;P位(左)——给位或肽酰基位,可与延伸中的肽酰基tRNA结合。 (2)具有转肽酶活性:将给位上的肽酰基转移给受位上的氨基酰tRNA,形成肽键。 (3)具有GTPase活性,水解GTP,获得能量。 (4)具有起动因子、延长因子及释放因子的结合部位。
在蛋白质生物合成过程中,常常由若干核蛋白体结合在同一mRNA分子上,同时进行翻译,但每两个相邻核蛋白之间存在一定的间隔,形成念球状结构。在蛋白质生物合成过程中,常常由若干核蛋白体结合在同一mRNA分子上,同时进行翻译,但每两个相邻核蛋白之间存在一定的间隔,形成念球状结构。 • 由若干核蛋白体结合在一条mRNA上同时进行多肽链的翻译所形成的念球状结构称为多核蛋白体。
三、tRNA与氨基酸的活化 氨基酸臂 反密码环
氨基酰-tRNA合成酶 氨基酸 + tRNA 氨基酰- tRNA ATP AMP+PPi • 氨基酸的活化 • (一)氨基酰-tRNA合成酶 • (aminoacyl-tRNA synthetase)
第一步反应 氨基酸 +ATP-E —→ 氨基酰-AMP-E+ AMP + PPi
第二步反应 氨基酰-AMP-E + tRNA ↓ 氨基酰-tRNA + AMP + E
tRNA与酶结合的模型 tRNA ATP 氨基酰-tRNA合成酶
氨基酰-tRNA合成酶对底物氨基酸和tRNA都有高度特异性。氨基酰-tRNA合成酶对底物氨基酸和tRNA都有高度特异性。 • 氨基酰-tRNA合成酶具有校正活性(proofreading activity) 。 • 氨基酰-tRNA的表示方法: Ala-tRNAAla Ser-tRNASer Met-tRNAMet
(二)起始肽链合成的氨基酰-tRNA 真核生物: Met-tRNAiMet 原核生物: fMet-tRNAifMet
四、蛋白质生物合成过程The Process of Protein Biosynthesis 翻译过程从阅读框架的5´-AUG开始,按mRNA模板三联体密码的顺序延长肽链,直至终止密码出现。 • 翻译的起始(initiation) • 翻译的延长(elongation) • 翻译的终止(termination ) 整个翻译过程可分为 :
活化氨基酸的缩合——核蛋白体循环 • 活化氨基酸缩合生成多肽链的过程在核蛋白体上进行。活化氨基酸在核蛋白体上反复翻译mRNA上的密码并缩合生成多肽链的循环反应过程,称为核蛋白体循环。 • 核蛋白体循环过程可分为起动、延长和终止三个阶段,这三个阶段在原核生物和真核生物类似,现以原核生物中的过程加以介绍。
(一)肽链合成起始(翻译起始) 指mRNA和起始氨基酰-tRNA分别与核蛋白体结合而形成翻译起始复合物(translational initiation complex)。
1、原核生物翻译起始复合物形成 • 核蛋白体大小亚基分离; • mRNA在小亚基定位结合; • 起始氨基酰-tRNA的结合; • 核蛋白体大亚基结合。
1)30S起动复合物的形成:在起动因子的促进下,30S小亚基与mRNA的起动部位,起动tRNA(fmet-tRNAfmet),和GTP结合,形成复合体。1)30S起动复合物的形成:在起动因子的促进下,30S小亚基与mRNA的起动部位,起动tRNA(fmet-tRNAfmet),和GTP结合,形成复合体。
2)70S起动前复合体的形成:IF3从30S起动复合体上脱落,50S大亚基与复合体结合,形成70S起动前复合体。2)70S起动前复合体的形成:IF3从30S起动复合体上脱落,50S大亚基与复合体结合,形成70S起动前复合体。 3)70S起动复合体的形成:GTP被水解,IF1和IF2从复合物上脱落。此时,tRNAfmet的反密码UAC与mRNA上的起动密码AUG互补结合,tRNAfmet结合在核蛋白的给位(P位)。
在起始密码子AUG上游9-13个核苷酸处,有一段可与核糖体16S rRNA配对结合的、富含嘌呤的3-9个核苷酸的共同序列,一般为AGGA,此序列称SD序列。它与核糖体小亚基内16S rRNA的3’端一段富含嘧啶的序列 GAUCACCUCCUUA-OH(暂称反SD序列)互补,形成氢键。使得结合于30S亚基上的起始tRNA能正确地定位于mRNA的起始密码子AUG。 • 真核生物中的mRNA具有帽子结构,已知需一种特殊的帽子结合蛋白(CBP)以识别此结构。
S-D序列 :mRNA上的AGGAGGU区域作为翻译起始信号,被称为Shine-Dalgarno顺序或S.D序列。
2、真核生物翻译起始复合物形成 • 核蛋白体大小亚基分离; • 起始氨基酰-tRNA结合; • mRNA在核蛋白体小亚基就位; • 核蛋白体大亚基结合。
40S elF-3 40S mRNA ② ATP met elF4E, elF4G, elF4A, elF4B,PAB ③ Met Met-tRNAiMet-elF-2-GTP ADP+Pi 60S Met elF-5 各种elF释放 eIF-2B、eIF-3、eIF-6 ④ ① GDP+Pi 60S Met 真核生物翻译起始复合物形成过程