1 / 43

O metod ě konečných prvků Lect_6

O metod ě konečných prvků Lect_6.ppt. Pár slov o Matlabu a o zobrazen í čísla na počítači. M. Okrouhlík Ústav termomechaniky, AV ČR , Praha Liberec, 2010. Recommended reading. Stejskal, V., Okrouhlík, M.: Kmitání s Matlabem, Vydavatelství ČVUT, Praha 2002, ISBN 80-01-02435-0.

flynn-silva
Download Presentation

O metod ě konečných prvků Lect_6

An Image/Link below is provided (as is) to download presentation Download Policy: Content on the Website is provided to you AS IS for your information and personal use and may not be sold / licensed / shared on other websites without getting consent from its author. Content is provided to you AS IS for your information and personal use only. Download presentation by click this link. While downloading, if for some reason you are not able to download a presentation, the publisher may have deleted the file from their server. During download, if you can't get a presentation, the file might be deleted by the publisher.

E N D

Presentation Transcript


  1. O metodě konečných prvkůLect_6.ppt Pár slov o Matlabu ao zobrazení čísla na počítači M. Okrouhlík Ústav termomechaniky, AV ČR, Praha Liberec, 2010

  2. Recommended reading

  3. Stejskal, V., Okrouhlík, M.: Kmitání s Matlabem, Vydavatelství ČVUT, Praha 2002, ISBN 80-01-02435-0 E:\edu_mkp_liberec_2\pdf_jpg_my_old_texts\KmiMat_240901_final\vibrace_1.pdf

  4. By C. Moler downloaded from www.mathworks.com/moler

  5. References to Moler’s book Fortran programs to [1] can be downloaded from www.pdas.com/programs/fmm.f90

  6. E:\edu_mkp_liberec_2\pdf_jpg_my_old_texts\skripta_jaderna\aplik_mechanika_kontinua_1989.pdfE:\edu_mkp_liberec_2\pdf_jpg_my_old_texts\skripta_jaderna\aplik_mechanika_kontinua_1989.pdf

  7. www.it.cas.cz/cs/elektronicka-kniha-numerical-methods-computation-mechanicswww.it.cas.cz/cs/elektronicka-kniha-numerical-methods-computation-mechanics

  8. All computers designed from 1985 use so called IEEE floating point arithmetics which means that there is a machine independent standard of the of floating point number treatment. This means that the floating point numbers are expressed in the form, where is normalized integer mantisa represented by 52 bits and e is another integer within the interval related to the number bits reserved for exponents representation. It is the finiteness of exponent which limits the interval of real numbers that can be represented by floating point numbers. The smallest floating-point number is is the underflow limit and can be viewed as the computational threshold. The maximum floating point number, pointing to the overflow limit, is These two limits should be distinguished from another important quantity associated with representation of floating point numbers, namely a unity round-off error, also called machine epsilon, corresponding to the distance from 1.0 to the next larger floating point number. Its value is and it is closely associated with the build up of roundoff errors. The number of decimal digits corresponding to 52 binary digits is approximately 16. It can be determined from , which gives .

  9. unit_roundoff = u, where 1 + u is different from 1 machine-epsilon = a – 1; where a is smallest representable number greater than 1 machine_epsilon = 2*u

  10. http://www.physics.ohio-state.edu/~dws/grouplinks/floating_point_math.pdfhttp://www.physics.ohio-state.edu/~dws/grouplinks/floating_point_math.pdf

  11. http://www.cs.berkeley.edu/~wkahan/Mindless.pdf

  12. In Matlab: c = a*b;

  13. Příklad

  14. Užitečné procedurypro programování MKP na koleně,a to pomocí Matlabu

More Related