80 likes | 97 Views
Learn about a stand-alone program focused on recruiting undergraduate and mid-career changers for middle school math teaching. Find web-based information and pathways to earn a math minor to prepare for the program.
E N D
Recruiting & Preparing More (and More Diverse) Middle School Math Teachers CMC-S Conference, November 2009 Mark Ellis, Associate Professor and Chair, Secondary Education
FLM Credential Program • Stand-alone program • Focused on middle school math teaching • Recruit from undergraduates and mid-career changers • Web-based information (http://faculty.fullerton.edu/mellis) • Master of Science in Education, Emphasis in Teaching Foundational Mathematics
What’s New with FLM at CSUF? • Pathways to earn math minor to prepare for FLM • Child Adolescent Studies • http://www.fullerton.edu/cct/Single_Subj/Single_Subj_Acad_Plans/chadflm_mathminor.pdf • Liberal Studies • http://www.fullerton.edu/cct/Single_Subj/Single_Subj_Acad_Plans/lbstflm_mathminor.pdf
Methods Preparation • Historical-Cultural strand • Content strand • Pedagogy strand • Key assignments • School Profile • Intervention with student • Visual Representation lesson (collaborative) • Mini-Lesson • Unit Plan (collaborative)
VideoCase A – Content & Pedagogy • Watch the videos for items 1-4 (Introduction through Assessment) at the website below. Note that each item may have multiple videos – be sure to scroll down! http://edcommunity.apple.com/ali/story.php?itemID=482 • Think about the teacher’s actions and how these did or did not support students’ involvement and mathematical reasoning. • Work out the mathematical comparison of the volumes of the two cylinders shown in the lesson (bring to class). • In class we then had a discussion of the video through the lens of the teaching model described by Shimizu, in “Aspects of Mathematics Teacher Education in Japan.” • Using ideas from the Shimizu article—specifically the ideas of hatsumon, kikan-shido, neriage, and matome—describe Ms. Martin’s approach to the lesson and list specific actions/evidence to support your claims.
Video Case B - Pedagogy • In this thread, discuss the Square Numbers lesson (http://www.mmmproject.org/ls/mainframe.htm). • The questions below may stimulate ideas but you are encouraged to comment on anything that caught your attention. • How did the teacher support students' engagement? • How did the lesson support students' making sense of square numbers? • How did the teacher show students that she valued their ideas?
Discussion Board Comments • One thing that caught my eye is that as the students were getting into groups, the teacher tells them specifically what she is listening for in their conversations. A lot of times as teachers we just say, "Here's the problem. Go to it." Ms. Brown gave them direction. • I really liked that each group had projector sheets to show their work. The groups knew they would be accountable for their findings and would have to show them to the rest of the class. When the area of a square was not evident to the class, Ms. Brown only stepped in to ask the group to explain their method. She encouraged the students to direct questions and answers to each other...sparking a discussion. She took the position of facilitator. • As the students made the connections between area and side length to a square and its square root, Ms. Brown asked about a square with the area of 5. She asked the students to support their answers. I like that she encouraged them to conduct what I call a "math experiment". • I was kind of amazed by the pair who discovered the 1.5 x 1.5 – at first, I assumed they just estimated, but they actually had a legitimate (and really simple) back-up! I love being blown away by the logic and thought processes that students have to offer. But, also as you shared, it was wonderful that she really made an effort to challenge her students to have high expectations for each other and most importantly, themselves!