420 likes | 1.02k Views
NOTES: 3.1, part 2 - Significant Figures. Significant Figures:. The “sig figs” in a measurement include all of the digits that are known , plus a last digit that is estimated The # of sig figs in a measurement depends on the precision of the instrument being used
E N D
Significant Figures: • The “sig figs” in a measurement include all of the digits that are known, plus a last digit that is estimated • The # of sig figs in a measurement depends on the precision of the instrument being used • How do we determine which digits are significant?
THE “RULES” FOR SIG FIGS!!
1) All non-zero numbers are significant. • EXAMPLES: • 672 - • 34 - • 1,245 - • 24,346 -
1) All non-zero numbers are significant. • EXAMPLES: • 672 - 3 sig figs • 34 - 2 sig figs • 1,245 - 4 sig figs • 24,346 - 5 sig figs
2) Zeroes between two non zero numbers are significant. • EXAMPLES: • 202 - • 1.01 - • 1,305 - • 10,001 - • 3,002 - • 62,004 -
2) Zeroes between two non zero numbers are significant. • EXAMPLES: • 202 - 3 sig figs • 1.01 - 3 sig figs • 1,305 - 4 sig figs • 10,001 - 5 sig figs • 3,002 - 4 sig figs • 62,004 - 5 sig figs
3) “Leading” zeroes are not significant (just placeholders) • EXAMPLES: • 0.0012 - • 0.000231 - • 0.00855 - • 0.0022 - • 0.0006469 -
3) “Leading” zeroes are not significant (just placeholders) • EXAMPLES: • 0.0012 - 2 sig figs • 0.000231 - 3 sig figs • 0.00855 - 3 sig figs • 0.0022 - 2 sig figs • 0.0006469 - 4 sig figs
4) Final or trailing zeroes are not significant UNLESS there is a decimal point in the number. • EXAMPLES: • 150 - • 22.0 - • 12,500 - • 0.00240 - • 5,250 - • 0.02300 - • 0.000350 -
4) Final or trailing zeroes are not significant UNLESS there is a decimal point in the number. • EXAMPLES: • 150 - 2 sig figs • 22.0 - 3 sig figs • 12,500 - 3 sig figs • 0.00240 - 3 sig figs • 5,250 - 3 sig figs • 0.02300 - 4 sig figs • 0.000350 - 3 sig figs
5) Powers of ten are not significant • EXAMPLES: • 1.50 X 102 - • 8.890 x 104 - • 7.0 x 108 - • 4.010500 x 1010 - • 6.35 x 10-12 -
5) Powers of ten are not significant • EXAMPLES: • 1.50 X 102 - 3 sig figs • 8.890 x 104 - 4 sig figs • 7.0 x 108 - 2 sig figs • 4.010500 x 1010 - 7 sig figs • 6.35 x 10-12 - 3 sig figs
PRACTICE: Determine how many significant figures are in each of the following measurements • 0.0034050 L ___________ • 33.600 m ___________ • 7500.0 g ___________ • 47,900 mm ___________ • 7,000,000,001 miles ___________ • 8.07 Hz ___________
PRACTICE: Determine how many significant figures are in each of the following measurements • 0.0034050 L ___________ • 33.600 m ___________ • 7500.0 g ___________ • 47,900 mm ___________ • 7,000,000,001 miles ___________ • 8.07 Hz ___________ 5 5 5 3 10 3
Sig Figs in Calculations: • Find the area of a floor that measures 7.7 meters by 5.4 meters: • AREA =
Sig Figs in Calculations: • Find the area of a floor that measures 7.7 meters by 5.4 meters: • AREA = 41.58 m2
But wait!... • The calculated answer has 4 sig figs, but each measurement used in the calculation only had 2! • The calculated area cannot be more precise than the measured values used to obtain it! • SO…we “round” the answer to the appropriate # of sig figs
ROUNDING: • After you have determined how many sig figs the answer can have, round to that many digits: • If the last significant digit is less than 5: leave the last sig fig as is; • If the last significant digit is 5 or greater: round up!
Practice Problems: How many sig figs in each of the following? 1) 123 meters - 2) 40,506 meters - 3) 9.8000 x 104 m - 4) 0.07080 m - 5) 98,000 m -
Practice Problems: How many sig figs in each of the following? 1) 123 meters - 3 sig figs 2) 40,506 meters - 5 sig figs 3) 9.8000 x 104 m - 5 sig figs 4) 0.07080 m - 4 sig figs 5) 98,000 m - 2 sig figs
More practice…Round the following measurements off so that they each contain 3 significant figures. 1) 366.2 L ___________ 2) 9,047,022 mg ___________ 3) 12.76 g ___________ 4) 999.9 J ___________
More practice…Round the following measurements off so that they each contain 3 significant figures. 1) 366.2 L ___________ 2) 9,047,022 mg ___________ 3) 12.76 g ___________ 4) 999.9 J ___________ 366 L 9,050,000 mg 12.8 g 1.00 x 103 J Notice this one must be in scientific notation to have 3 sig. figs.
ADDITION AND SUBTRACTION • First add or subtract, then round the answer to the last decimal place they have in common. 25.46 1.6251 + 221.3 -0.543 = = = =
ADDITION AND SUBTRACTION • First add or subtract, then round the answer to the last decimal place they have in common. 25.46 1.6251 + 221.3 -0.543 = 246.76 = 246.8 = 1.0821 = 1.082
Example: 123.25 + 46.0 + 86.257 = =
Example: 123.25 + 46.0 + 86.257 = 255.507 = 255.5 The answer is expressed as 255.5 since 46.0 has only one decimal place.
Examples: a. 15.2 b. 10.8164 + 5.0892 - 8.22 = = = = c. 17.1 d. 2.1 + 4.235 + 3.92 - 0.77 = = = =
Examples: a. 15.2 b. 10.8164 + 5.0892 - 8.22 = 20.2892 = 20.3 = 2.5964 = 2.60 c. 17.1 d. 2.1 + 4.235 + 3.92 - 0.77 = 16.33 = 16.3 = 10.255 = 10.3
MULTIPLICATION AND DIVISION • Multiply or divide first, then round the answer to the same number of sig figs as the smallest number you started with. 1.311 x 2.20 = = 6.884 / 2 = =
MULTIPLICATION AND DIVISION • Multiply or divide first, then round the answer to the same number of sig figs as the smallest number you started with. 1.311 x 2.20 = 2.8842 = 2.88 6.884 / 2 = 3.441 = 3
Example: 23.0 x 432 x 19 = =
Example: 23.0 x 432 x 19 = 188,784 = 190,000 The answer is expressed as 190,000 or 1.9 x 105 since 19 has only two sig. figs.
Examples: a. 3.214 x 4.24 = b. 6.8 x 3.145 = c. 122.82 / 2.00 = d. 0.072 / 4.36 = e. 5.82 x 760 x 325 = 723 x 273
Examples: a. 3.214 x 4.24 = 13.6 b. 6.8 x 3.145 = 21 c. 122.82 / 2.00 = 61.4 d. 0.072 / 4.36 = 0.17 e. 5.82 x 760 x 325 = 7.3 723 x 273
Perform the following calculations. Round your answers to the proper # of sig. figs. 1) 36.57 m / 3.21 s = ___________ 2) 41.376g + 13.3g + 42.9g = ___________ 3) 5.67 m x 13.44 m = ___________ 4) (5.83 m / 2.67 s) / 2.1 s = ___________ 5) 9.374 V x 6.0 = ___________ 11.4 m/s 97.6 g 76.2 m2 1.0 m/s2 56 V From now on, we will round all our answers to the correct # of significant figures.