1 / 71

Exploring Quantum Computation: Stealing God's Cycles

Dive into the fascinating concept of quantum computation where multiple parallel worlds evolve to deliver an observable output, akin to a giant computer stealing cycles from the mind of God. Discover the implications and possibilities.

foushee
Download Presentation

Exploring Quantum Computation: Stealing God's Cycles

An Image/Link below is provided (as is) to download presentation Download Policy: Content on the Website is provided to you AS IS for your information and personal use and may not be sold / licensed / shared on other websites without getting consent from its author. Content is provided to you AS IS for your information and personal use only. Download presentation by click this link. While downloading, if for some reason you are not able to download a presentation, the publisher may have deleted the file from their server. During download, if you can't get a presentation, the file might be deleted by the publisher.

E N D

Presentation Transcript


  1. Great Theoretical Ideas In Computer Science Quantum Computation: Stealing Cycles From The Mind Of God Lecture 28 CS 15-251

  2. What if . . . . Steven Rudich: www.cs.cmu.edu/~rudich www.discretematch.com rudich0123456789

  3. … we could spawn off exponentially many quantum worlds . . . Steven Rudich: www.cs.cmu.edu/~rudich www.discretematch.com rudich0123456789

  4. …the evolution of each world being equivalent to one thread of a massive parallel computation . . . Steven Rudich: www.cs.cmu.edu/~rudich www.discretematch.com rudich0123456789

  5. … at the end of which the many quantum worlds coalesced back into our single world… Steven Rudich: www.cs.cmu.edu/~rudich www.discretematch.com rudich0123456789

  6. … in which the output of the computation was observable to us? Steven Rudich: www.cs.cmu.edu/~rudich www.discretematch.com rudich0123456789

  7. That would be like using the naturally parallel quantum evolution of the universe as one giant computer. Steven Rudich: www.cs.cmu.edu/~rudich www.discretematch.com rudich0123456789

  8. That would be like stealing computational cycles from the mind of God! Steven Rudich: www.cs.cmu.edu/~rudich www.discretematch.com rudich0123456789

  9. Sounds like a Douglas Adams plot……. but some physicists interpret the potential of using quantum mechanics in computation in just that way! Steven Rudich: www.cs.cmu.edu/~rudich www.discretematch.com rudich0123456789

  10. Quantum Mechanics • All of the strange things in quantum mechanics are captured by the two slit experiment. Steven Rudich: www.cs.cmu.edu/~rudich www.discretematch.com rudich0123456789

  11. Two-Slit ExperimentThomas Young 1801 Steven Rudich: www.cs.cmu.edu/~rudich www.discretematch.com rudich0123456789

  12. Watched Pot / Unwatched Pot Steven Rudich: www.cs.cmu.edu/~rudich www.discretematch.com rudich0123456789

  13. Richard Feynman [1982] • Can a classical computer simulate a quantum process in a reasonable amount of time? If not, can we use the quantum universe to perform amazing computations that are currently not accessible to us? Steven Rudich: www.cs.cmu.edu/~rudich www.discretematch.com rudich0123456789

  14. Electron is in either a 0 … ground state 1 … excited state Storing A Bit In An Atom Steven Rudich: www.cs.cmu.edu/~rudich www.discretematch.com rudich0123456789

  15. Superposition of 0 and 1 states. State 0 with amplitude a; State 1 with amplitude b. a2 + b2 = 1 a,b complex Quantum Bit (Qubit): a|0> + b|1> Steven Rudich: www.cs.cmu.edu/~rudich www.discretematch.com rudich0123456789

  16. Unobserved Qubit Electron is in a superposition of states. 0 with amplitude a and 1 with amplitude b. Observe The Qubit You see a 0 with probability a2 1 with probability b2 Electron is now just a classical bit: 0 or 1. The Qubit: a|0> + b|1> Steven Rudich: www.cs.cmu.edu/~rudich www.discretematch.com rudich0123456789

  17. Superposition of 0 and 1 states. State 0 with amplitude a; State 1 with amplitude b. a2 + b2 = 1 a,b complex Quantum Bit (Qubit): a|0> + b|1> We now understand that a and b are the square roots of probabilities! Steven Rudich: www.cs.cmu.edu/~rudich www.discretematch.com rudich0123456789

  18. Superposition of 0 and 1 states. State 0 with amplitude a; State 1 with amplitude b. a2 + b2 = 1 We will only need a,b real. Quantum Bit (Qubit): a|0> + b|1> (a,b) 1 Steven Rudich: www.cs.cmu.edu/~rudich www.discretematch.com rudich0123456789

  19. Two Ways To Represent A Fair Coin: • 1/sqrt(2)|0> + 1/sqrt(2)|1> • 1/sqrt(2)|0> - 1/sqrt(2)|1> Steven Rudich: www.cs.cmu.edu/~rudich www.discretematch.com rudich0123456789

  20. Possible Qubit Implementations • a|0> + b|1> • Polarizations of a photon • Nuclear spin in uniform magnetic field • State of electron orbiting single atom Steven Rudich: www.cs.cmu.edu/~rudich www.discretematch.com rudich0123456789

  21. …. n-qubit Register • n qubits side by side. Steven Rudich: www.cs.cmu.edu/~rudich www.discretematch.com rudich0123456789

  22. Unobserved Register Superposition of all possible 2n n-bit strings. Each string s will have an amplitude as. S n-bit strings s (as)2 = 1 Observe Register You see the string s with probability (as)2 Register is now just the classical string s. n-Qubit Register Steven Rudich: www.cs.cmu.edu/~rudich www.discretematch.com rudich0123456789

  23. Register R Superposition of all possible 2n n-bit strings. Each string s will have an amplitude as. S n-bit strings s (as)2 = 1 |R> will be a vector with 2n entries, one for each n-bit string. In position s, will be the number as Vector Representation Steven Rudich: www.cs.cmu.edu/~rudich www.discretematch.com rudich0123456789

  24. |s> is the vector representation of the string s, it is the vector with 1 in position s and 0 in all other positions. |R> will be a vector with 2n entries, one for each n-bit string. In position s, will be the number as |R> = Ss as|s> Vector Representation Example: The qubit |b> = a|0> + b|1> Steven Rudich: www.cs.cmu.edu/~rudich www.discretematch.com rudich0123456789

  25. x|R>= Ssxas|s> |R> + |T> = Ss (as + bs)|s> |R> = Ss as|s>|T> = Ss bs|s> Vector Math Steven Rudich: www.cs.cmu.edu/~rudich www.discretematch.com rudich0123456789

  26. …. Quantum Computer Preview n-qubit register • Unobserved Register: Each time step, f takes the superposition to a new superposition. • Observe register at the end of computation to get string s with probability (amplitude of s)2 Quantum Logic Gates compute f One time step Steven Rudich: www.cs.cmu.edu/~rudich www.discretematch.com rudich0123456789

  27. …. Quantum Computer Preview n-qubit register • Quantum Mechanics requires that f be a linear, unitary function from register superpositions to register superpositions. Quantum Logic Gates compute f One time step Steven Rudich: www.cs.cmu.edu/~rudich www.discretematch.com rudich0123456789

  28. …. Quantum Computer Preview n-qubit register • The important thing about “unitary” is that f be reversible, in other words 1-1 and onto. Quantum computers can be run backwards. Quantum Logic Gates compute f One time step Steven Rudich: www.cs.cmu.edu/~rudich www.discretematch.com rudich0123456789

  29. …. Quantum Computer Preview n-qubit register • LINEARITY: • f(a1|s1> + ….+ ai|si> + … + ak|sk>)= • a1|f(|s1>)> + ….+ ai|f(|si >)> + … + ak|f(|sk>)> Quantum Logic Gates compute f One time step Steven Rudich: www.cs.cmu.edu/~rudich www.discretematch.com rudich0123456789

  30. …. Quantum Computer Preview n-qubit register • At each point in time the register is in a superposition: |R> = a1|s1> + ….+ ai|si> + … + ak|sk> where si is the ith n-bit string. Ss (as)2 = 1. • The next time step, the register will be in f(|R>), where f is a linear, unitary function. Quantum Logic Gates compute f One time step Steven Rudich: www.cs.cmu.edu/~rudich www.discretematch.com rudich0123456789

  31. …. Quantum Computer Preview n-qubit register • This can be viewed as a vector processor on huge (2n entries) vectors. It is reminiscent of the vector view of generating functions. Quantum Logic Gates compute f One time step Steven Rudich: www.cs.cmu.edu/~rudich www.discretematch.com rudich0123456789

  32. …. Quantum Computer Preview n-qubit register • You can think of 2n worlds, each with its own amplitude. One world for each register contents. Quantum Logic Gates compute f One time step Steven Rudich: www.cs.cmu.edu/~rudich www.discretematch.com rudich0123456789

  33. Let’s back up and review things we understand fairly well… Steven Rudich: www.cs.cmu.edu/~rudich www.discretematch.com rudich0123456789

  34. Classical Computers Review(Processor Assignment) • 2n possible states • One for each n-bit sequence Combinational Logic (AND, NOT) n-bit register One time step Steven Rudich: www.cs.cmu.edu/~rudich www.discretematch.com rudich0123456789

  35. Watched Pot Unwatched Pot State Evolution:Classical Computer BOIL BOIL Steven Rudich: www.cs.cmu.edu/~rudich www.discretematch.com rudich0123456789

  36. Probabilistic Computers Review Combinational Logic (AND, NOT); Coin Flip Gates • 2n possible states • One for each n-bit sequence • produces 0 with prob ½ and 1 with prob ½ n-bit register $ One time step $ Steven Rudich: www.cs.cmu.edu/~rudich www.discretematch.com rudich0123456789

  37. Watched Pot Unwatched Pot State Evolution:Probabilistic Computer 1 .5 .5 .25 .25 .25 .25 At time t, the machine is in a probability distribution on its 2n states. Steven Rudich: www.cs.cmu.edu/~rudich www.discretematch.com rudich0123456789

  38. Probabilistic Computers Review Combinational Logic (AND, NOT); Coin Flip Gates • At any point in time, the machine is in a probability distribution on all n-bit strings. Observing the register at the end is like sampling a point from the final distribution on n-bit strings computed by the machine. n-bit register $ One time step Steven Rudich: www.cs.cmu.edu/~rudich www.discretematch.com rudich0123456789

  39. X:= 0; X:= $; X:= $ Output X. A Silly Probabilistic Algorithm X=0 X=1 X=0 X=1 X=0 Steven Rudich: www.cs.cmu.edu/~rudich www.discretematch.com rudich0123456789

  40. Quantum Computers • Instead of a distribution of 2nprobabilities, for each of the 2n possible strings in the register – we associate a superposition of 2namplitudes, for each of the 2n possible n-bit strings. Quantum Logic Gates n-qubit register One time step Steven Rudich: www.cs.cmu.edu/~rudich www.discretematch.com rudich0123456789

  41. Probability Distribution on X: Pr[X=0] = a Pr[X=1] = b a+b = 1 Superposition on X: Amplitude of X=0 is a Amplitude of X=1 is b a2 + b2 = 1 Probability Distribution Versus Superposition For A Bit X 0· a,b · 1 a,b real Steven Rudich: www.cs.cmu.edu/~rudich www.discretematch.com rudich0123456789

  42. Quantum Computers • At any point in time, the machine will be in a superposition of all possible n-bit strings. When we observe the register, we will see string s with probability (amplitude of s)2. Quantum Logic Gates n-qubit register One time step Steven Rudich: www.cs.cmu.edu/~rudich www.discretematch.com rudich0123456789

  43. …. Quantum Computer n-qubit register • f is linear and reversible: • f(a1|s1> + ….+ ai|si> + … + ak|sk>)= • a1|f(|s1>)> + ….+ ai|f(|si >)> + … + ak|f(|sk>)> Quantum Logic Gates compute f One time step Steven Rudich: www.cs.cmu.edu/~rudich www.discretematch.com rudich0123456789

  44. …. Quantum Computer n-qubit register • At each point in time the register is in a superposition: |R> = a1|s1> + ….+ ai|si> + … + ak|sk> where si is the ith n-bit string. Ss (as)2 = 1. • The next time step, the register will be in f(|R>), where f is a linear, unitary function. Quantum Logic Gates compute f One time step Steven Rudich: www.cs.cmu.edu/~rudich www.discretematch.com rudich0123456789

  45. …. Quantum Computer n-qubit register • There are only two quantum logic gates used in this talk: • The Quantum Coin Gate • The Toffoli Gate Quantum Logic Gates compute f One time step Steven Rudich: www.cs.cmu.edu/~rudich www.discretematch.com rudich0123456789

  46. The Quantum Coin Gate (Q$)Operates on a single qubit • Q$(|0>) = 1/sqrt(2) [|0> + |1>] • Q$(|1>) = 1/sqrt(2) [|0> - |1>] • By linearity constraint: • Q$(a|0> + b|1>) = • 1/sqrt(2) [ (a+b)|0> + (a-b)|1> ] Steven Rudich: www.cs.cmu.edu/~rudich www.discretematch.com rudich0123456789

  47. X:= 0; X:= Q$(X); X:= Q$(X) Output X. A Profound Quantum Algorithm X=0 X=1 X=0 X=1 X=0 ALWAYS OUTPUTS 0. Steven Rudich: www.cs.cmu.edu/~rudich www.discretematch.com rudich0123456789

  48. X:= 0; X:= Q$(X); X:= Q$(X) Output X. Q$(|0>) = 1/sqrt(2) [|0> +|1>] Q$(|1>) = 1/sqrt(2) [|0> - |1>] X=0 X=1 X=0 X=1 X=0 Each yellow arrow is a transition with amplitude 1/sqrt(2) ; The blue arrow is –1/sqrt(2). Steven Rudich: www.cs.cmu.edu/~rudich www.discretematch.com rudich0123456789

  49. Flip n quantum coins twice • Start with register |R> = |0000..0> • Flip one quantum coin per qubit • |R> = 1/sqrt(2n) S |s> • Flip each qubit again … • |R> = |00000..0> Steven Rudich: www.cs.cmu.edu/~rudich www.discretematch.com rudich0123456789

  50. If c=1, T acts like a NAND gate. If a=1, c=0, then T outputs 1,b,b; This is a FANOUT gate for b. The Toffoli Gate Toffoli a a a b b c c XOR (a AND b) Steven Rudich: www.cs.cmu.edu/~rudich www.discretematch.com rudich0123456789

More Related