1 / 27

Mark Tame QTeQ - Quantum Technology at Queen’s Queen’s University, Belfast

Fault-tolerant One-way quantum computation using minimal resources. Mark Tame QTeQ - Quantum Technology at Queen’s Queen’s University, Belfast. 2/21. The one-way model for quantum computation – Brief introduction. 1) Preparation of |+>. S ac : |0> |0> --> |0> |0>

sancha
Download Presentation

Mark Tame QTeQ - Quantum Technology at Queen’s Queen’s University, Belfast

An Image/Link below is provided (as is) to download presentation Download Policy: Content on the Website is provided to you AS IS for your information and personal use and may not be sold / licensed / shared on other websites without getting consent from its author. Content is provided to you AS IS for your information and personal use only. Download presentation by click this link. While downloading, if for some reason you are not able to download a presentation, the publisher may have deleted the file from their server. During download, if you can't get a presentation, the file might be deleted by the publisher.

E N D

Presentation Transcript


  1. Fault-tolerantOne-way quantum computation using minimal resources Mark Tame QTeQ - Quantum Technology at Queen’s Queen’s University, Belfast

  2. 2/21 The one-way model for quantum computation – Brief introduction 1) Preparation of |+> Sac: |0> |0> --> |0> |0> |0> |1> --> |0> |1> |1> |0> --> |1> |0> |1> |1> --> - |1> |1> | y > = |+> |+> |+> |+> 2) Application of CZ ’s | y> = 1/4(|+> |+> |+> |+> + |+> |-> |+> |-> + |-> |+> |-> |+> - |-> |-> |-> |-> ) - R. Raussendorf & H.-J. Briegel, PRL 2001- Raussendorf, Browne & Briegel, PRA 2003just type “one-way” or “cluster state” on the archive.

  3. 3/21 The one-way model for quantum computation – Brief introduction 3) Measurement process ?

  4. 4/21 The one-way model for quantum computation – Brief introduction 3) Measurement process | Q1> = ( a|0> + b|1>) (i) | y > = ( a|0> |+> + b|1> |-> )

  5. 5/21 The one-way model for quantum computation – Brief introduction | Q1> = ( a|0> + b|1>) 3) Measurement process | Q2> = ( g|0> + d|1>) (ii) | y > = ( a g |0> |0> + a d |0> |1>+ b g |0> |1> - b d |0> |1> )

  6. 6/21 The one-way model for quantum computation – Brief introduction 3) Measurement process (iii)

  7. 7/21 The one-way model for quantum computation – Brief introduction 3) Measurement process

  8. 8/21 The one-way model for quantum computation – Brief introduction Grover’s Algorithm Algorithms: P. Walther et al., PRL (2005) Deutsch’s Algorithm M. S. Tame et al., PRL (2007) Quantum Games M. Paternostro et al., NJP (2005)

  9. 9/21 Noise in the one-way model for quantum computation Preparation of |+> Local/Global noise: • Pauli error • General error • Loss Application of CZ ’s Stage 1 • controlled phase gate error • controlled unitary gate error • Loss from non-deterministic gates Measurement process Stage 2 • error in measurement of qubits • propagates into the remaining cluster • Environment effects during • time evolution – Decoherence • Pauli error • General error • Loss

  10. 10/21 Work on Fault-tolerance in the one-way model -Raussendorf, PhD Thesis (2003) (http://edoc.ub.unimuenchen.de/archive/00001367) -Nielsen and Dawson, PRA 71, 042323 (2005) -Aliferis and Leung, PRA 73, 032308 (2006) Proved that an Error Threshold existed, which could be determined by mapping noise in the cluster state to noise in a corresponding circuit model. -Dawson, Haselgrove and Nielsen, PRL 96, 020501 (2006). -Dawson, Haselgrove and Nielsen, PRL 96, 020501 (2006) PRA 73, 052306 (2006) Error correcting schemes and associated error threshold values for optical setups STEANE 7 qubit and GOLAY 23 qubit codes -Ralph, Hayes and Gilchrist PRL, 95, 100501 (2005) -Varnava, Browne and Rudolph PRL 97, 120501 (2006) Loss tolerant schemes for linear optics setups -Silva et al., quant-ph/0611273 (2006). Fault-tolerant using topological error correction and surface codes -Raussendorf, Harrington and Goyal, Ann. Phys. 321, 2242 (2006) -Raussendorf and Harrington, quant-ph/0610082 (2006) -Silva et al., quant-ph/0611273 (2006) -Fujii and Yamamoto, quant-ph/0611160 (2006) Most Recently:

  11. 11/21 Problems with Fault-tolerant schemes in the one-way model • Large resource overheads: • - A minimum of 7 qubits for an encoded qubit (STEANE code) • Complicated structure for the encoded qubit: • - Underlying graph to encode qubit is complex • Error syndrome extraction techniques lead to additional overheads • “One-buffered”, “two-at-a-time” and “fully-parallel” approaches • complicate the model: • - They modify the measurement patterns and entangling steps • Off-line preparation of ancilla qubits can also be a cumbersome • process: • - setup dependent Q: Is there a way to achieve fault-tolerance using less resources?

  12. 12/21 Minimal-resource Fault-tolerance in the one-way model Local Collective noise 4-qubit collective noise 2-qubit collective noise 3-qubit collective noise Universal resource for one-way QC -Van den Nest, Miyake, Dür, Briegel PRL 97, 150504 (2006)

  13. 13/21 Decoherence-free subspace one-way model - Simple protection from collective noise G. M. Palma et al., Proc. Roy. Soc. London A 452, 567-584 (1996) Basic 1-bit teleportation unit: 4 physical qubits

  14. 14/21 Decoherence-free subspace one-way model - Protection from all types of collective noise (I) Theory: Kempe et al., PRA 63 042307 (2001) Experiment: Bourenanne et al., PRL 92 107901 (2004)

  15. 15/21 Decoherence-free subspace one-way model - Protection from all types of collective noise (II) Basic 1-bit teleportation unit: 6 physical qubits Knill, Laflamme and Viola PRL 84, 2525 (2000) (Decoherence-free subsystems)

  16. 16/21 Performance of Decoherence-free subspace one-way model - Theoretical (I) Probe states: H H QPT techniques: H H M. S. Tame, M. Paternostro, M. S. Kim -submitted (2007)

  17. 17/21 Performance of Decoherence-free subspace one-way model - Theoretical (I)

  18. 18/21 Performance of Decoherence-free subspace one-way model - Experimental (II) Linear optical setup Standard R. Prevedel, M. S. Tame, A. Stefanov, M. Paternostro, M. S. Kim and A. Zeilinger -submitted (2007) DFS encoded Information transfer protocol: 4 physical qubits See also: Kwiat et al., Science 290, 498-501 (2000) for single qubit DFS encoding.

  19. 19/21 Outlook 1) Investigating the performance of the fault-tolerance, for asymmetries in the collective approximation How does the performance of the 2- and 3-qubit Codes with asymmetries compare to standard cluster state Quantum Error Correcting Codes (QECC). 2) Most resourceful method for the 3-qubit code M. S. Tame et al., work in progress (2007)

  20. 20/21 Special thanks to Collaborators : Mauro Paternostro and Myungshik Kim Queen’s, UK : Robert Prevedel, André Stefanov, Pascal Böhi, Anton Zeilinger Vienna, Austria : Vlatko Vedral Leeds, UK QUINFO @ : Chris Hadley, Sougato Bose London, UK : Massimo Palma Palermo, Italy

  21. 21/21 References -M. S. Tame, M. Paternostro, M. S. Kim -submitted (2007) DFS one-way QC -R. Prevedel, M. S. Tame, A. Stefanov, M. Paternostro, M. S. Kim and A. Zeilinger -submitted (2007) -Hein et al.,Proceedings of the International School of Physics "Enrico Fermi" on "Quantum Computers, Algorithms and Chaos", Varenna, Italy, July, 2005; also at quant-ph/0602096 Introduction to graph states and one-way QC using cluster states -Raussendorf, Browne and Briegel, PRA 68, 022312 (2003). -Dawson, Haselgrove and Nielsen, PRL 96, 020501 (2006) PRA 73, 052306 (2006) Fault-tolerant one-way QC using QECC -Lidar and Birgitta Whaley, "Irreversible Quantum Dynamics", F. Benatti and R. Floreanini (Eds.), pp. 83-120 (Springer Lecture Notes in Physics vol. 622, Berlin, 2003); also at quant-ph/0301032 Introduction to DFS *Thanks for your attention*

  22. Gt=0.5 Gt=0.15 Gt=5 Gt=1

More Related