1 / 40

Chapter 20

Chapter 20. DNA Technology and Genomics. Overview: Understanding and Manipulating Genomes. Sequencing of the human genome was largely completed by 2003 Recombinant DNA – where DNA sequences from two different sources (species), are combined in vitro into the same DNA molecule.

Download Presentation

Chapter 20

An Image/Link below is provided (as is) to download presentation Download Policy: Content on the Website is provided to you AS IS for your information and personal use and may not be sold / licensed / shared on other websites without getting consent from its author. Content is provided to you AS IS for your information and personal use only. Download presentation by click this link. While downloading, if for some reason you are not able to download a presentation, the publisher may have deleted the file from their server. During download, if you can't get a presentation, the file might be deleted by the publisher.

E N D

Presentation Transcript


  1. Chapter 20 DNA Technology and Genomics

  2. Overview: Understanding and Manipulating Genomes • Sequencing of the human genome was largely completed by 2003 • Recombinant DNA – where DNA sequences from two different sources (species), are combined in vitro into the same DNA molecule

  3. Concept 20.1: DNA cloning permits production of multiple copies of a specific gene or other DNA segment • GENE CLONING – process of preparing gene-sized pieces of DNA in identical copies • Allows scientists to work directly with specific genes

  4. LE 20-2 Cell containing gene of interest Bacterium Gene inserted into plasmid Bacterial chromosome Plasmid Gene of interest Recombinant DNA (plasmid) DNA of chromosome Plasmid put into bacterial cell Recombinant bacterium Host cell grown in culture to form a clone of cells containing the “cloned” gene of interest Protein expressed by gene of interest Gene of interest Copies of gene Protein harvested Basic research and various applications Basic research on gene Basic research on protein Gene for pest resistance inserted into plants Gene used to alter bacteria for cleaning up toxic waste Protein dissolves blood clots in heart attack therapy Human growth hor- mone treats stunted growth

  5. Using Restriction Enzymes to Make Recombinant DNA • Restriction enzyme makes many cuts, yielding restriction fragments • Fragments with “sticky ends” bond with complementary “sticky ends” of other fragments • DNA ligase seals the bonds between restriction fragments

  6. LE 20-3 Restriction site 5¢ 3¢ DNA 3¢ 5¢ Restriction enzyme cuts the sugar-phosphate backbones at each arrow. Sticky end DNA fragment from another source is added. Base pairing of sticky ends produces various combinations. Fragment from different DNA molecule cut by the same restriction enzyme One possible combination DNA ligase seals the strands. Recombinant DNA molecule

  7. Cloning a Eukaryotic Gene in a Bacterial Plasmid • CLONING VECTOR – the original plasmid that can carry foreign DNA into a cell and it can then be replicated

  8. Producing Clones of Cells • Cloning a human gene in a bacterial plasmid can be divided into six steps: 1. Vector and gene-source DNA are isolated 2. DNA is inserted into the vector 3. Human DNA fragments are mixed with cut plasmids, and base-pairing takes place 4. Recombinant plasmids are mixed with bacteria 5. The bacteria are plated and incubated 6. Cell clones with the right gene are identified Animation: Cloning a Gene

  9. LE 20-4_1 Bacterial cell lacZ gene (lactose breakdown) Human cell Isolate plasmid DNA and human DNA. Restriction site ampR gene (ampicillin resistance) Bacterial plasmid Gene of interest Sticky ends Human DNA fragments Cut both DNA samples with the same restriction enzyme. Mix the DNAs; they join by base pairing. The products are recombinant plasmids and many nonrecombinant plasmids. Recombinant DNA plasmids

  10. LE 20-4_2 Bacterial cell lacZ gene (lactose breakdown) Human cell Isolate plasmid DNA and human DNA. Restriction site ampR gene (ampicillin resistance) Bacterial plasmid Gene of interest Sticky ends Human DNA fragments Cut both DNA samples with the same restriction enzyme. Mix the DNAs; they join by base pairing. The products are recombinant plasmids and many nonrecombinant plasmids. Recombinant DNA plasmids Introduce the DNA into bacterial cells that have a mutation in their own lacZ gene. Recombinant bacteria

  11. LE 20-4_3 lacZ gene (lactose breakdown) Bacterial cell Human cell Isolate plasmid DNA and human DNA. Restriction site ampR gene (ampicillin resistance) Bacterial plasmid Gene of interest Sticky ends Human DNA fragments Cut both DNA samples with the same restriction enzyme. Mix the DNAs; they join by base pairing. The products are recombinant plasmids and many nonrecombinant plasmids. Recombinant DNA plasmids Introduce the DNA into bacterial cells that have a mutation in their own lacZ gene. Recombinant bacteria Plate the bacteria on agar containing ampicillin and X-gal. Incubate until colonies grow. Colony carrying recombinant plasmid with disrupted lacZ gene Colony carrying non- recombinant plasmid with intact lacZ gene Bacterial clone

  12. Identifying Clones Carrying a Gene of Interest • A clone carrying the gene of interest can be identified with a nucleic acid probe having a sequence complementary to the gene • This process is called nucleic acid hybridization • An essential step in this process is denaturation of the cells’ DNA, separation of its two strands

  13. LE 20-5 Colonies containing gene of interest Master plate Master plate Probe DNA Radioactive single-stranded DNA Solution containing probe Gene of interest Film Single-stranded DNA from cell Filter Filter lifted and flipped over Hybridization on filter A special filter paper is pressed against the master plate, transferring cells to the bottom side of the filter. The filter is treated to break open the cells and denature their DNA; the resulting single-stranded DNA molecules are treated so that they stick to the filter. The filter is laid under photographic film, allowing any radioactive areas to expose the film (autoradiography). After the developed film is flipped over, the reference marks on the film and master plate are aligned to locate colonies carrying the gene of interest.

  14. One method of introducing recombinant DNA into eukaryotic cells is electroporation, applying a brief electrical pulse to create temporary holes in plasma membranes • Alternatively, scientists can inject DNA into cells using microscopic needles • Once inside the cell, the DNA is incorporated into the cell’s DNA by natural genetic recombination

  15. Amplifying DNA in Vitro: The Polymerase Chain Reaction (PCR) • The polymerase chain reaction, PCR, can produce many copies of a specific target segment of DNA • A three-step cycle • heating (DENATURATION) • Cooling (ANNEALING) • replication (EXTENSION) • Results in an exponentially growing population of identical DNA molecules

  16. LE 20-7 5¢ 3¢ Target sequence Genomic DNA 3¢ 5¢ 5¢ 3¢ Denaturation: Heat briefly to separate DNA strands 3¢ 5¢ Annealing: Cool to allow primers to form hydrogen bonds with ends of target sequence Cycle 1 yields 2 molecules Primers Extension: DNA polymerase adds nucleotides to the 3¢ end of each primer New nucleo- tides Cycle 2 yields 4 molecules Cycle 3 yields 8 molecules; 2 molecules (in white boxes) match target sequence

  17. Concept 20.2: Restriction fragment analysis detects DNA differences that affect restriction sites • Restriction fragment analysis detects differences in the nucleotide sequences of DNA molecules • Such analysis can rapidly provide comparative information about DNA sequences

  18. Gel Electrophoresis and Southern Blotting • One indirect method of rapidly analyzing and comparing genomes is gel electrophoresis • This technique uses a gel as a molecular sieve to separate nuclei acids or proteins by size Video: Biotechnology Lab

  19. LE 20-8 Mixture of DNA molecules of differ- ent sizes Longer molecules Cathode Shorter molecules Power source Gel Glass plates Anode

  20. A technique called Southern blotting combines gel electrophoresis with nucleic acid hybridization • Specific DNA fragments can be identified by Southern blotting, using labeled probes that hybridize to the DNA immobilized on a “blot” of gel

  21. LE 20-10 Heavy weight Restriction fragments DNA + restriction enzyme Nitrocellulose paper (blot) I I I Gel Sponge Paper towels I Normal -globin allele I Sickle-cell allele I Heterozygote Alkaline solution Preparation of restriction fragments. Gel electrophoresis. Blotting. Probe hydrogen- bonds to fragments containing normal or mutant -globin I I I Radioactively labeled probe for -globin gene is added to solution in a plastic bag I I I Fragment from sickle-cell -globin allele Film over paper blot Fragment from normal -globin allele Paper blot Hybridization with radioactive probe. Autoradiography.

  22. Restriction Fragment Length Differences as Genetic Markers • Restriction fragment length polymorphisms (RFLPs, or Rif-lips) are differences in DNA sequences on homologous chromosomes that result in restriction fragments of different lengths • A RFLP can serve as a genetic marker for a particular location (locus) in the genome • RFLPs are detected by Southern blotting

  23. Concept 20.3: Entire genomes can be mapped at the DNA level • The most ambitious mapping project to date has been the sequencing of the human genome • Officially begun as the Human Genome Project in 1990, the sequencing was largely completed by 2003 • Scientists have also sequenced genomes of other organisms, providing insights of general biological significance

  24. Genetic (Linkage) Mapping: Relative Ordering of Markers • The first stage in mapping a large genome is constructing a linkage map of several thousand genetic markers throughout each chromosome • The order of markers and relative distances between them are based on recombination frequencies

  25. LE 20-11 Chromosome bands Cytogenetic map Genes located by FISH Genetic (linkage) mapping Genetic markers Physical mapping Overlapping fragments DNA sequencing

  26. Physical Mapping: Ordering DNA Fragments • A physical map is constructed by cutting a DNA molecule into many short fragments and arranging them in order by identifying overlaps • Physical mapping gives the actual distance in base pairs between markers

  27. DNA Sequencing • Relatively short DNA fragments can be sequenced by the dideoxy chain-termination method • Inclusion of special dideoxyribonucleotides in the reaction mix ensures that fragments of various lengths will be synthesized

  28. LE 20-12 DNA (template strand) Primer Deoxyribonucleotides Dideoxyribonucleotides (fluorescently tagged) 3¢ 5¢ 5¢ DNA polymerase 3¢ DNA (template strand) Labeled strands 3¢ 5¢ 3¢ Direction of movement of strands Laser Detector

  29. Linkage mapping, physical mapping, and DNA sequencing represent the overarching strategy of the Human Genome Project • An alternative approach to sequencing genomes starts with sequencing random DNA fragments • Computer programs then assemble overlapping short sequences into one continuous sequence

  30. LE 20-13 Cut the DNA from many copies of an entire chromosome into overlapping frag-ments short enough for sequencing Clone the fragments in plasmid or phage vectors Sequence each fragment Order the sequences into one overall sequence with computer software

  31. Concept 20.4: Genome sequences provide clues to important biological questions • In genomics, scientists study whole sets of genes and their interactions • Genomics is yielding new insights into genome organization, regulation of gene expression, growth and development, and evolution

  32. Identifying Protein-Coding Genes in DNA Sequences • Computer analysis of genome sequences helps identify sequences likely to encode proteins • The human genome contains about 25,000 genes, but the number of human proteins is much larger • Comparison of sequences of “new” genes with those of known genes in other species may help identify new genes

  33. Determining Gene Function • Disable the gene and observe the consequences • In vitro mutagenesis mutations are introduced into a cloned gene, altering or destroying its function • Mutated gene is returned to the cell to determine gene’s function by organisms phenotype

  34. Studying Expression of Interacting Groups of Genes • Automation : Use DNA microarray assays to test many gene locations at once • compare patterns of gene expression in different tissues, at different times, or under different conditions

  35. LE 20-14 Tissue sample Isolate mRNA. mRNA molecules Make cDNA by reverse transcription, using fluorescently labeled nucleotides. Apply the cDNA mixture to a microarray, a microscope slide on which copies of single-stranded DNA fragments from the organism’s genes are fixed, a different gene in each spot. The cDNA hybridizes with any complementary DNA on the microarray. Labeled cDNA molecules (single strands) DNA microarray Rinse off excess cDNA; scan microarray for fluorescent. Each fluorescent spot (yellow) represents a gene expressed in the tissue sample. Size of an actual DNA microarray with all the genes of yeast (6,400 spots)

  36. Comparing Genomes of Different Species • Provide information in many fields of biology • Can determine organisms evolutionary history • Correlate research with lower organisms to human biology

  37. Future Directions in Genomics • Genomics is the study of entire genomes • Proteomics is the systematic study of all proteins encoded by a genome • Single nucleotide polymorphisms (SNPs) provide markers for studying human genetic variation

  38. Concept 20.5: The practical applications of DNA technology affect our lives in many ways • Many fields benefit from DNA technology and genetic engineering • Genetic disorders • Human Gene Therapy • Pharmaceuticals • Forensic Science • Environmental Cleanup • Agriculture – transgenic organisms – animals and plants

  39. SUMMARY • Describe recombinant DNA and how a gene is cloned in bacteria – plasmids, restriction enzymes, vector, nucleic acid hybridization, clone isolation • Describe amplification of DNA segments in vitro using PCR • Describe gel electrophoresis, Southern blotting, and RFLPs. • Describe methods in genomic mapping – cytogenic map, linkage map, physical mapping, DNA sequencing, dideoxy chain-termination method, random DNA fragments • Determining protein and gene function; • Practical applications of all of this technology

More Related