250 likes | 411 Views
Scheme. A “small” variant of Lisp. Basics. Why Lisp? Learning lisp in the study of AI is like learning French if you are going to France (Charniak & McDermot) Interpreted language Prefix operator notation, with parentheses Functional style. Overview. Dr Scheme Atoms & Lists
E N D
Scheme A “small” variant of Lisp
Basics • Why Lisp? • Learning lisp in the study of AI is like learning French if you are going to France (Charniak & McDermot) • Interpreted language • Prefix operator notation, with parentheses • Functional style
Overview • Dr Scheme • Atoms & Lists • Functions: Math & predicates • Constants: Quoting • More functions: List construction • Defining variables • Flow of control • Defining functions
Dr. Scheme • See web site for downloads • Has different language levels: • “Language” • “Choose Language” • “Full Scheme” • Two windows • Top: program editing (“definitions”) window • Define functions, variables, comments • Bottom: interactive evaluation window: interpreted • Evaluate functions, test code
Atoms & Lists • Characters are: A…Z, a…z, 0…9, ! % $ * + - / = ? • Atom • String of one or more characters with no spaces between; Examples: 123, 1xyz, fred • #\ used for character constants; e.g., #\newline • #t, #f (true, false) • Upper/lower case only distinguished in constants
Math • Form of function application is prefix Syntax: operatorvaluevalue • Expressions are parenthesized, e.g., (+ 1 2) • Math operators: + - / *; other examples: • Other examples: abs, sqrt, modulo, remainder • Nested expressions often used: (abs (* (- 2 3) (- 0 1)))
“Interactions” window > (+ 3 4) 7 > > (+ (- 6 3) 10) WARNING: Interactions window is out of sync with the definitions window. Click Execute. 13 • Notation: (+ (- 6 3) 10) 13
Predicates: Functions returning boolean values • Often named ending with “?” equal? – test for equality (works with lists) boolean? – test for boolean type object integer? – test for integer type object (equal? 10 3) #f (equal? 4 4) #t (boolean? #f) #t
Relational operators and functions (> op1 op2) – test if op1 > op2 (< op1 op2) – test if op1 < op2 (= op1 op2) – numeric equality test (>= op1 op2) (<= op1 op2) (not op1) – negate the boolean operand (and op1op2) – boolean conjunction (or op1op2) – boolean disjunction
Defining & using variables (define x 1) • defines variable x to have value 1 > (define a 4) > a 4 a 4 (+ a 6) 10
Lists • Lists () is the empty list Lists are fully parenthesized and contain lists and/or sequences of atoms • Often need to quote lists to pass as parameters to functions • E.g., test if two lists “(+ 1 2)” and “(+ 2 1)” are equal (equal? (+ 1 2) (+ 2 1)) #t • Quote the lists so that they are not evaluated (equal? ‘(+ 1 2) ‘(+ 2 1)) #f • Quotes just need single quote in front of list
Functions for lists (member op1op2) – if op1 is a list element of op2, return sublist of op2 starting with op1; else return #f (member ‘1 ‘(+ 1 2)) (1 2) (member ‘- ‘(+ 1 2)) #f (member ‘1 ‘((1 2) (2 3))) #f
List construction functions-1 (list op1op2 …) - form a list from a sequence of items (append op1op2 …) – put elements of lists in a new list (car op) - return the head element of a list op (cdr op) - return the tail of a list op, as a list (cons op1op2) - make new list with op1 on front of op2 (list ‘a ‘b ‘c) (a b c) (append '(a) '(b)) (a b) (car ‘(a b)) a (cdr ‘(a b)) (b) (cons ‘a ‘(b c)) (a b c)
Exercise-1 (list ‘(a) ‘b)) (append ‘(a b c) ‘(1 2 3)) (car (list ‘a ‘b ‘c)) (cdr ‘((a b) c)) (cdr ‘(a)) (cons ‘a ‘((b))) (cons ‘(a) ‘())
List construction functions-2 • More list functions & predicates caar: (car (car x)) cadr: (car (cdr x)) caddr: (car (cdr (cdr x))) etc (up to 4 operators in a sequence) (null? ‘()) #t (null? ‘(a b c)) #f (null? (cdr ‘(a))) #t
Defining list variables (define y ‘(a b c)) y (a b c) (define init-state ‘((blank 5 4) (6 1 8) (7 3 2))) (car init-state) (blank 5 4)
Define-struct: Dr. Scheme Syntax: (define-struct name (field1field2 …)) Make new structs: make-name Get elements: name-field2, name-field2… (define-struct row (left middle right)) (define row1 (make-row ‘blank 1 8)) (row-left row1) blank (row-middle row1) 1 (row-right row1) 8
Conditional evaluation Syntax: (cond [bool-condition1expr1] [bool-condition2expr2] … [else default-expr] ; optional ) (define init-state ‘((blank 5 4) (6 1 8) (7 3 2))) (cond [(null? init-state) init-state] [else (car init-state)] ) (blank 5 4)
Functions-1 • Use “lambda expressions” • Syntax: (lambda (op1op2 …) (expression)) (lambda (init-state) (cond [(null? init-state) init-state] [else (car init-state)] ) ) #<procedure> >
Functions-2: Supplying parameters (list ‘(a)) ; typical function usage ( list ; the function ‘(a) ; the parameter ) ( (lambda (init-state) (cond [(null? init-state) init-state] [else (car init-state)] ) ) ; the function '(a) ; the parameter )
Functions-3 • Usually want to name our functions • These have been “anonymous” functions (define ourFun (lambda (arg) (cond [(null? arg) arg] [else (car arg)] ) ; end cond ) ; end lambda ) ; end define (ourFun '(a)) a
Exercise-2 • Write a function to return –1, 0, +1 depending on two parameters a and b a < b return –1 a > b return +1 a = b return 0
Recursion: Control structure in functional programming • Count the number of elements in a list (define list-length (lambda (myList) (cond [(null? myList) 0] [else (+ 1 (list-length (cdr myList)) ) ] ) ; end cond ) ; end lambda ) ; end list-length
Recursive list reverse (define list-reverse (lambda (myList) (cond [(null? myList) myList] [else (append (list-reverse (cdr myList)) (list (car myList)) ) ] ; end else ) ; end cond ) ; end lambda ) ; end list-reverse
Non-negative integer multiply through repeated addition (define int-mult (lambda (x y) (cond [(equal? y 0) 0] [(equal? x 0) 0] [(equal? y 1) x] [else (+ x (int-mult x (- y 1)) ) ] ; end else ) ; end cond ) ; end lambda ) ; end int-mult