1 / 72

Online Robust Dictionary Learning

Online Robust Dictionary Learning. Cewu Lu, Jianping Shi, and Jiaya Jia The Chinese University of Hong Kong. Dictionary Learning. Denoise [ Mairal et al. 2008]. Upsampling [ Couzinie-Devy 2010]. Image Classification [Wang et al. 2010]. Background Subtraction

fynn
Download Presentation

Online Robust Dictionary Learning

An Image/Link below is provided (as is) to download presentation Download Policy: Content on the Website is provided to you AS IS for your information and personal use and may not be sold / licensed / shared on other websites without getting consent from its author. Content is provided to you AS IS for your information and personal use only. Download presentation by click this link. While downloading, if for some reason you are not able to download a presentation, the publisher may have deleted the file from their server. During download, if you can't get a presentation, the file might be deleted by the publisher.

E N D

Presentation Transcript


  1. Online Robust Dictionary Learning Cewu Lu, Jianping Shi, and JiayaJia The Chinese University of Hong Kong

  2. Dictionary Learning Denoise [Mairal et al. 2008] Upsampling[Couzinie-Devy 2010] Image Classification [Wang et al. 2010] Background Subtraction [Cong et al. 2010]

  3. Dictionary Learning Let be a set of signal. Let be a set of “basis vectors”.

  4. Dictionary Learning is “adapted” to if it can represent with a few basis vector. Spare

  5. Dictionary Learning

  6. Dictionary Learning

  7. Robust Dictionary Learning L2 norm data fitting is not a robust measure. A toy example: X={2,5,6,9,10,12,14,15,18}

  8. Robust Dictionary Learning L2 norm data fitting is not a robust measure. A toy example: Outliers X={2,5,6,9,10,12,14,15,80000} Inliers

  9. Robust Dictionary Learning [ Wagner et al 2009], [ Wang et al 2012], [ Zhao et al 2011 ] L1 norm is a robust measure. A toy example: X={2,5,6,9,10,12,14,15,80000}

  10. Robust Dictionary Learning [ Wagner et al 2009], [ Wang et al 2012], [ Zhao et al 2011 ] L1 norm is a robust measure. A toy example: X={2,5,6,9,10,12,14,15,80000}

  11. Robust Dictionary Learning Outliers Incorrect Dictionary Inliers Non-Robust Dictionary Learning

  12. Robust Dictionary Learning Outliers Correct Dictionary Inliers Robust Dictionary Learning

  13. Robust Dictionary Learning [ Wagner et al 2009],[ Wang et al 2012], [ Zhao et al 2011 ] But, it is not widely used…. Why? Outliers Dictionary Inliers Non-Robust Dictionary Learning

  14. Online Dictionary Learning Because…. L1 norm data-fitting hasn’t closed-form heavy computation Large-scale data Dynamic data We need Online.

  15. Online Dictionary Learning Online Solver [Mairal et al 2010]: Dictionary Update Data Current

  16. Online Dictionary Learning Online Solver [Mairal et al 2010]: Dictionary Update Data History Current

  17. Online Dictionary Learning Online Solver [Mairal et al 2010]: Dictionary Update Data History Current

  18. Online Dictionary Learning Online Solver [Mairal et al 2010]: Dictionary Update Data Current History

  19. Online Dictionary Learning Online Solver [Mairal et al 2010]: Dictionary Update Data Current History

  20. Online Dictionary Learning Online Solver [Mairal et al 2010]: Dictionary Update Data Current History

  21. Online Dictionary Learning Online Solver [Mairal et al 2010]: Dictionary Update Data Current History

  22. Online Dictionary Learning Online Solver [Mairal et al 2010]: Dictionary Update Data Current History

  23. Online Dictionary Learning Online Solver [Mairal et al 2010]: Dictionary Update Dictionary Data History Current

  24. Online Dictionary Learning Online Solver [Mairal et al 2010]:

  25. Online Robust Dictionary Learning Our goal: Make robust dictionary learning online. Less Computation Less Memory

  26. Online Robust Dictionary Learning Dictionary Update online Forget history Data History Current Robust Require Whole Data Outliers Dictionary Inliers

  27. Online Robust Dictionary Learning Dictionary Update online Forget history Data History Challenging Current Robust Require Whole Data Outliers Dictionary Inliers

  28. Online Robust Dictionary Learning • Our Online Approach (Online) • Robustness Analysis (Robust) • Discussion

  29. Online Robust Dictionary Learning • Our Online Approach • Robustness Analysis • Discussion

  30. Online Dictionary Learning Settings: Each min-batch data contains h data point. We have two parameter matrixes and . … … Data (Min-batch)

  31. Online Dictionary Learning Initialization: and are zero matrixes. Dictionary D is a random matrix. Update … … Data Current

  32. Online Dictionary Learning General Framework Update … … Data History Current

  33. Online Dictionary Learning General Framework Update … … Data History Current

  34. Online Dictionary Learning General Framework Update … … Data Current History

  35. Online Dictionary Learning General Framework Update … … Data Current History

  36. Online Dictionary Learning General Framework Update … … Data Current History

  37. Online Dictionary Learning General Framework Update … … Dictionary Data History Current

  38. Our Online Approach

  39. Our Online Approach In step: Previous Dictionary … … Data t Min-batch Data: History Current Sparse code:

  40. Our Online Approach Solve Current Dictionary Data t Min-batch Data: Current History Sparse code:

  41. Our Online Approach New Data Information History Information Solve Current Dictionary Data t Min-batch Data: Current History Sparse code:

  42. Record and only. Our Online Approach

  43. Online Robust Dictionary Learning • Our Online Approach • Robustness Analysis • Discussion

  44. Our Online Approach Solve Current Dictionary Data Min-batch Data: Current History Sparse code:

  45. Robustness Analysis Solve

  46. Robustness Analysis (Proof) Solve

  47. Robustness Analysis (Proof) Solve Iterative Reweighted Least Squares

  48. Robustness Analysis (Proof) Solve Solve

  49. Robustness Analysis (Proof) Solve Solve

  50. Robustness Analysis History data New data

More Related