1 / 15

1-D motion

1-D motion . Definition of work: . Kinetic energy: . Work-energy theorem:. SI units of work and energy: Joule = N m=kg m 2 /s 2. James Prescott Joule b. Dec. 24, 1818, Salford, Lancashire, England d. Oct. 11, 1889, Sale, Cheshire.

gabe
Download Presentation

1-D motion

An Image/Link below is provided (as is) to download presentation Download Policy: Content on the Website is provided to you AS IS for your information and personal use and may not be sold / licensed / shared on other websites without getting consent from its author. Content is provided to you AS IS for your information and personal use only. Download presentation by click this link. While downloading, if for some reason you are not able to download a presentation, the publisher may have deleted the file from their server. During download, if you can't get a presentation, the file might be deleted by the publisher.

E N D

Presentation Transcript


  1. 1-D motion Definition of work: Kinetic energy: Work-energy theorem: SI units of work and energy: Joule = Nm=kg m2/s2

  2. James Prescott Joule b. Dec. 24, 1818, Salford, Lancashire, Englandd. Oct. 11, 1889, Sale, Cheshire Discovered some basic laws of electricity and thermodynamics (Joule’s Law and Joule-Thomson Law); established the basis of the Law of Conservation of Energy and The First Law of Thermodynamics Main occupation and source of funding: Brewery

  3. Was home-schooled by some of the finest scientists of his time (including John Dalton) Since childhood, he was a fearless and meticulous experimenter As a boy, he hiked in the mountains with a pistol, studying echo and the speed of sound. He sounded the depth of Lake Windermere to be 198 ft. He tortured servants with some crazy experiments. Spent his honeymoon climbing in French Alps and measuring the temperature at the top and the bottom of waterfalls

  4. As a teenager, Joule was trying to replace steam engines with electric engines in his brewery. He failed, but became interested in the connections between mechanical work, heat, and electricity. In 1840, at the age of 21, he discovered “Joule’s Law”: Heat generated in a wire = Resistance x Current^2 It showed that electricity can be converted into heat!

  5. 1843 (Age 24): Paddle-wheel experiment: mechanical work can be converted into heat! Therefore, heat is one of the forms of energy. It led to the First Law of Thermodynamics It also showed that energy is conserved. Energy Conservation Law! Met with hostility and disbelief. It took decades before Joule’s discovery was accepted. Only one person believed Joule. It was William Thomson (later Lord Kelvin). They started working together.

  6. Joule's paper ``On the Mechanical Equivalent of Heat'' was communicated by Faraday to the Royal Society in 1849 and appeared in Philosophical Transactions in 1850. The last paragraph of this historic paper ends with the statements: • I will therefore conclude by considering it as demonstrated by the experiments contained in this paper: • That the quantity of heat produced by the friction of bodies, whether solid or liquid, is always proportional to the quantity of force extended. • That the quantity of heat capable of increasing the temperature of a pound of water (weighed in vacuo, and taken between 55 degand 60 deg F) by 1 deg F requires for its evolution the expenditure of a mechanical force represented by the fall of 772 lb. through a space of one foot. • A third proposition, suppressed by the publication committee, state that friction consists of a conversion between mechanical work into heat.

  7. 2 or 3 D motion Definition of work: Kinetic energy: Work-energy theorem:

  8. A block of mass M is on a horizontal surface and is attached to a spring, spring constant k. If the spring is compressed an amount A and the block released from rest, how far will it go before stopping if the coefficient of friction between the block and the surface is ? How will this answer change is the block is not attached to the spring??

  9. Problem 2 • A 5.00 kg block is moving at v0=6.00 m/s along a frictionless, horizontal surface toward a spring with constant k=500 N/m that is attached to a wall. • Find the maximum distance the spring will be compressed. • If the spring is to compress by no more than 0.150 m, what should be the maximum value of v0?

  10. Problem 3 A car is stopped by a constant friction force that is independent of the car’s speed. By what factor is the stopping distance changed if the car’s initial speed is doubled?

  11. Problem 3a A car accelerates from rest to a speed of 100 mph over a distance of 200 m. What is the work done by a friction force on a car?

  12. Problem 4 You and your bicycle have combined mass 80.0 kg. When you reach the base of a bridge, you are traveling along the road at 5.00 m/s. At the top of the bridge, you have climbed a vertical distance of 5.2 m and have slowed to 1.5 m/s. You can ignore work done by friction and any inefficiency in the bike or your legs. a) What is the total work done on you and your bicycle when you go from the base to the top of the bridge? b) How much work have you done with the force you apply to the pedals?

  13. Problem 5 How many joules of energy does 100 watt light bulb use per hour? How fast would a 70-kg person have to run to have that amount of energy?

  14. Problem 6

More Related