1 / 63

COUNTERCURRENT MULTISTAGE EXTRACTION II

Chapter 6. COUNTERCURRENT MULTISTAGE EXTRACTION II. More Applications HETP, HTU, Capacity. Tocopherol - Separation. Structure of Tocochromanols. Solubility of Tocopherols in sc-CO 2. Squalene - Tocopherol - Sterol - Separation. Top Product of Tocopherols.

gafna
Download Presentation

COUNTERCURRENT MULTISTAGE EXTRACTION II

An Image/Link below is provided (as is) to download presentation Download Policy: Content on the Website is provided to you AS IS for your information and personal use and may not be sold / licensed / shared on other websites without getting consent from its author. Content is provided to you AS IS for your information and personal use only. Download presentation by click this link. While downloading, if for some reason you are not able to download a presentation, the publisher may have deleted the file from their server. During download, if you can't get a presentation, the file might be deleted by the publisher.

E N D

Presentation Transcript


  1. Chapter 6 COUNTERCURRENT MULTISTAGE EXTRACTION II More Applications HETP, HTU, Capacity

  2. Tocopherol - Separation

  3. Structure of Tocochromanols

  4. Solubility of Tocopherols in sc-CO2

  5. Squalene - Tocopherol - Sterol - Separation

  6. Top Product of Tocopherols

  7. Binary Analysis of the Separation Process

  8. Separation Factor Squalene- Tocopherol

  9. Squalene - Tocopherol/Sterol-separation with CO2 99 wt-% squalene 90 wt-% squalene Saure 1996

  10. Squalene/Tocopherols From Distillates Gas, liquid Squalene Tocopherols Sterols Feed Saure 1996 Equilibrium stages

  11. Separation of FFA C16/C18-FFA -CO2 Machado 1998

  12. Purification of Synthetic Tocopherolacetate • Calculation of number of theoretical stages (Jänecke). 333 K, 24 MPa CO2. U. Fleck. Tocopherolacetate.

  13. Purification of Synthetic Tocopherolacetate • Determination of nth in dependence on reflux ratio for different purities. (McCabe-Thiele and Jänecke); 333 K, 16 MPa CO2. . U. Fleck.

  14. Purification of Synthetic Tocopherolacetate • Concentration profiles along column length; 333 K, 20 MPa CO2. U. Fleck.

  15. Free fatty acids (FFA) -/- Squalene- FA-esters Buß 1999

  16. Separation Factor: Influence of Concentration • Variation of K-factors (left) and separation factors (right) with column length. 370 K; 23 MPa. Left: = Squalen, = FAE,  = FFA; Right: = aFAE, Squalen, = aFFA, Squalen. D. Buß, 2001

  17. Separation Analysis: FFA, Toco - Triglycerides, Carotene Solvent ratio  / (kg reflux / kg extract

  18. Separation Analysis: FAME - Carotenes

  19. Orange Peel Oil Representation of an improved separation factor model at 333 K. M. Budich

  20. Orange Peel Oil: Removal of Terpenes Budich 1998

  21. No Aceotrope in Ethanol - Water Budich, 1998

  22. Ethanol - Water Calculation of the theoretical number of stages. M. Budich.

  23. Mixer-Settler (5 Stages) Flow Scheme of Mixer-Settler. M. Jungfer, 2000. Design: Trepp, ETH-Zürich

  24. Mixer-Settler, Single Stage Mixer-Settler-Module No. n. M. Jungfer, 2000. Design: Trepp, ETH-Zürich

  25. Solvent Cycle: Solvent to Feed Ratio of SFE Processes Countercurrent Separation V/LvS / F FAEE, FAME (5 %)  20 7.5  125 FFA (fatty acids) (2 %) 50 4.5  50 Squalene (1.5 %)  20 10  50 Tocopherol-Purif. (2.5 %) 35  20  45 Solvent ratio V/L, kg/kg Reflux ratio v, - Solvent to feed ratio S/F, kgF /kgF Basis: Solvent: Carbon dioxide 10 - 30 MPa, 350 K

  26. Solubility and Solvent to Feed Ratio Relationship between loading and solvent-to-feed ratio. M. Budich. Orange peel oil.

  27. Means for reducing costs Enhance solubility in solvent: Pressure, temperature other solvent (C3H8 vs. CO2) Reduce energy for solvent cycle: low p for extract recovery

  28. Purification of Tocopherol:CO2-Propane Temp. Solubility Selectivity 10 % Propane initial feed mixture Solubility Selectivity Density Fleck 1998

  29. Purification of tocopherol:CO2-Propane Propane,10 MPa Propane, 9 MPa Propane, 9 MPa Solvent ratio = 30 Solvent ratio = 70 Reflux ratio Fleck, 1999

  30. Some Data on Solvent Cycle Costs High vacuum distillation: 100 % p Solvent: CO2 200 % Solvent: CO2 + C3H8 20 % Adsorption: Solvent: CO2 50 % Solvent: CO2 + C3H8 8 %

  31. HETP, HTU FA-ethyl esters - CO2 Riha 1996

  32. HETP: Tocopherol • HETP (Jänecke) vs solvent ratio in stripping section. Saure, 1996

  33. HETS for aqueous mixtures M. Budich

  34. Pressure drop, flooding log  p log (gas loading) flooding mG Different packings, systems log mL log (gas/liquid loading)

  35. Flooding CY-Water CY- Toco Raschig-Water Raschig- Olive oil- Dist. EX-Water Stockfleth 1999 Billet-diagram

  36. Flooding: Tocopherol Feed Mixture (55 % Toco) • Flooding diagram for tocopherol feed mixture (T155/CO2), Packing Sulzer CY ; Operating points (BP) and observed flooding points (FP). C. Saure, 1996

  37. Density of Phases Densities of the coexisting phases of the system PFAD + CO2. N. Machado

  38. Flooding: PFAD Hydraulic capacity diagram of packed columns. FV = f (y). N. Machado

  39. Density of Phases • Density of coexisting phases: CO2–Squalene. • Flüssig-/Gasphase: /= 333,15 K, /= 353,15 K ▲/▲ = 373,15 K. D. Buß

  40. Flooding: Squalene Hydraulic capacity diagram of packed columns: Squalene - CO2. N. Machado

  41. Flooding: CPO Flooding Diagram, Crude Palm Oil - Carbon Dioxide, M. Jungfer, 2000

  42. Flooding: Olive Oil Deodorizer Distillate • Flooding diagram CO2–OODD; Packing “Sulzer EX 35 mm”. Exp. Flooding Data: Stockfleth , o = Data of separation column. D. Buß, 2001.

  43. Purification of Synthetic Tocopherolacetate • Loading limits for a 35 and 50 mm column. CO2. U. Fleck.

  44. Pressure Drop Pressure-drop curves. M. Budich. Orange peel oil.

  45. Flooding: Orange Peel Oil velocity of vapor phase inside an empty tube Overall correlation of flooding lines for CO2+orange peel oil. M. Budich

  46. Flooding: Orange Peel Oil Median lines: B=52.7 for CO2+terpenes; B=77.5 for CO2+5-fold concentrate. A = 8.0. Comparison of flooding behavior of different mixtures. M. Budich.

  47. Density of Phases Densities of coexisting phases of CO2+ethanol+water mixtures. M. Budich.

  48. Flooding point data for CO2+ethanol+water M. Budich, 1999

  49. Flooding: Ethanol - Water - CO2 Flooding point of CO2+ ethanol + water. M Budich.

  50. Capacity of Columns Flooding point 100 000 kgCO2/(m2h): Column diameter Throughput [mm] [kgCO2/h] 25 49 50 196 100 785 Linear velocity: 46 mm/s

More Related