1 / 15

Waiting Line Theory 2

Waiting Line Theory 2. Akhid Yulianto, SE, MSc (Log). Poisson Probability. x = Tingkat kedatangan λ = rata rata kedatangan per periode e = 2.71828. Eksponential Probability. µ =jumlah unit yang di layani per periode e = 2.71828. M/M/1.

gage
Download Presentation

Waiting Line Theory 2

An Image/Link below is provided (as is) to download presentation Download Policy: Content on the Website is provided to you AS IS for your information and personal use and may not be sold / licensed / shared on other websites without getting consent from its author. Content is provided to you AS IS for your information and personal use only. Download presentation by click this link. While downloading, if for some reason you are not able to download a presentation, the publisher may have deleted the file from their server. During download, if you can't get a presentation, the file might be deleted by the publisher.

E N D

Presentation Transcript


  1. Waiting Line Theory 2 Akhid Yulianto, SE, MSc (Log)

  2. Poisson Probability • x = Tingkat kedatangan • λ = rata rata kedatangan per periode • e = 2.71828

  3. Eksponential Probability • µ =jumlah unit yang di layani per periode • e = 2.71828

  4. M/M/1 • Ls = average number of units in the system (waiting and being served) • Ws = average time a unit spends in the system • Lq = average number of units waiting in the queue • Wq = Average time a unit spends waiting in the queue • Utilization factor for the system • Probability of 0 units in the system • Probability of more than k units in the system, where n is the number of units in the system

  5. Example • Tom Jones, mekanik di toko Golden Muffler, dapat memasang muffler baru dengan rata rata 3/jam (mengikuti eksponential distribution). Customer yang meminta service ini dengan rata rata kedatangan 2/ jam (poisson distribution). Pelayanan FCFS dan populasi yang tak terbatas.

  6. Analisa Waiting Line 1st • λ = 2 • µ = 3 • Ls = rata rata 2 mobil di sistem/jam • Ws = 1 jam rata rata menunggu di sistem • Lq = 1.33 mobil menunggu di garis , rata rata • Wq = 40 menit waktu menunggu per mobil. • ρ = 66.6% mekanik sibuk • P0 = 0.33 kemungkinan tidak ada mobil di sistem

  7. M/M/k Queuing System • Multiple channels (with one central waiting line) • Poisson arrival-rate distribution • Exponential service-time distribution • Unlimited maximum queue length • Infinite calling population • Examples: • Four-teller transaction counter in bank • Two-clerk returns counter in retail store

  8. M/M/S • Ls = average number of units in the system (waiting and being served) • Ws = average time a unit spends in the system • Lq = average number of units waiting in the queue • Wq = Average time a unit spends waiting in the queue • Probability of 0 units in the system

  9. Example • Toko Golden Muffler memutuskan untuk membuka garasi kedua dan menyewa mekanik kedua untuk menangani instalasi muffler. Tingkat kedatangan dan tingkat layanan sama. Analisa?

  10. Analisa waiting line 2th • Ls = 0.75 mobil di dalam sistem • Ws = 22.5 menit sebuah mobil di sistem • Lq = 0.083 mobil di antrian • Wq = 2.5 menit sebuah mobil di antrian

  11. M/D/1 • Constant service time model • Contoh: assembly line/pencucian mobil otomatis

  12. Costs • Berdasar jumlah unit customer • TC = Cw L + Cs k • TC = Total cost • Cw = cost of waiting • L = jumlah rata rata units di sistem • Cs = Service cost • k or s = channel number • L = Lq + λ µ

  13. Prinsip biaya • Bandingkan biaya yang terendah • Bisa terjadi pada perencanaan untuk penambahan channel • Atau penambahan layanan

  14. Tambahan • Buku lain punya rumus yang berbeda namun hasil perhitungan ± sama • Jadi jangan bingung

  15. Reference • Anderson, & Sweeney, 2002, Quantitative for decision making,9th edn, Sydney • Heizer, J.,& Render, B., 2006, Operation Management, 8th edn, Pearson Education, Singapore

More Related