1 / 15

Face-spoofing & Anti face - spoofing

Face-spoofing & Anti face - spoofing. 2019 年 4 月. Face spoofing 方法. 3D 面具 重放攻击:打印照片、设备播放视频 DeepFakes : AI 视频换脸 音频 + 图片  视频: 《 You Said That?: Synthesising Talking Faces from Audio 》. Deepfakes. 使用 AutoEncoder 模型 +GAN x_A ' = Decode_A (Encode( x_A ))

gaier
Download Presentation

Face-spoofing & Anti face - spoofing

An Image/Link below is provided (as is) to download presentation Download Policy: Content on the Website is provided to you AS IS for your information and personal use and may not be sold / licensed / shared on other websites without getting consent from its author. Content is provided to you AS IS for your information and personal use only. Download presentation by click this link. While downloading, if for some reason you are not able to download a presentation, the publisher may have deleted the file from their server. During download, if you can't get a presentation, the file might be deleted by the publisher.

E N D

Presentation Transcript


  1. Face-spoofing&Antiface-spoofing 2019年4月

  2. Facespoofing 方法 • 3D面具 • 重放攻击:打印照片、设备播放视频 • DeepFakes:AI视频换脸 • 音频+图片 视频: 《You Said That?: SynthesisingTalking Faces from Audio 》

  3. Deepfakes 使用AutoEncoder模型+GAN x_A' = Decode_A(Encode(x_A)) x_B' = Decode_B(Encode(x_B)) faceswap= Decode_B(Encode(x_A))

  4. 《SynthesisingTalking Faces from Audio 》

  5. Anti-spoofing种类 • 基于纹理:重放设备颜色失真、摩尔条纹、真假面孔的粗糙程度 • 基于运动 • 面部运动:眨眼、摇头、嘴唇运动、面部表情 • 背景运动:用户和背景之间的运动相关性、深度图 • 传感器协助:红外摄像、结构光

  6. Anti-spoofing 方法演进 • 《Face Spoof Detection with Image Distortion Analysis》:单帧输入,镜面反射+图像质量失真+颜色 等统计量特征  • 《Face Spoofing Detection Using Colour Texture Analysis》:HSV空间人脸多级LBP特征 + YCbCr空间人脸LPQ特征 • 《Detection of Face Spoofing Using Visual Dynamics》: • 方向光流直方图HOOF + LBP-TOP; • 动态模式分解DMD • 《Learning Deep Models for Face Anti-Spoofing: Binary or Auxiliary Supervision》:采用了CNN-RNN架构来学习从人脸视频到rPPG信号的映射

  7. 《Learning Deep Models for Face Anti-Spoofing: Binary or Auxiliary Supervision》

  8. 上述Anti-spoofing问题 • 针对特定face-spoofing训练,泛化性差 • 屏幕重播检测导致对光照,角度等条件敏感,接受率下降 • 仅考虑外部设备重放攻击,忽略系统层级的重放攻击

  9. 《DeepFakes: a New Threat to Face Recognition? Assessment and Detection》 • 基于 VidTIMIT数据集生成了低质、高质(分辨率不同)换脸视频数据集 • Deepfakes假视频攻击接受率: • VGG:85.62% • Facenet:95.00% • GAN能够生成具有可匹配音频语音的高质量的面部表情,常规嘴唇音频同步检测无效

  10. Anti-DeepFakes • 《In Ictu Oculi: Exposing AI Generated Fake Face Videos by Detecting Eye Blinking 》:CNN+RNN(LRCN)检测眨眼

  11. Anti-DeepFakes • 《 Exposing DeepFake Videos By Detecting Face Warping Artifacts 》 • DeepFake分辨率有限,面部变换存在伪影 • 负样本为人脸仿射变换产生的伪像 • 实验了四种模型:VGG16,ResNet50,ResNet101和ResNet152

  12. 谢谢!

More Related