1 / 18

Transfection of eukaryotic cells

Transfection of eukaryotic cells. Bryon Anderson. Presentation Overview. What is Transfection? Transfection vs. Transformation Purpose of Transfection How it Works Experimental method/process Strengths and weaknesses of technique. Transfection. What is Transfection?

galena
Download Presentation

Transfection of eukaryotic cells

An Image/Link below is provided (as is) to download presentation Download Policy: Content on the Website is provided to you AS IS for your information and personal use and may not be sold / licensed / shared on other websites without getting consent from its author. Content is provided to you AS IS for your information and personal use only. Download presentation by click this link. While downloading, if for some reason you are not able to download a presentation, the publisher may have deleted the file from their server. During download, if you can't get a presentation, the file might be deleted by the publisher.

E N D

Presentation Transcript


  1. Transfection of eukaryotic cells Bryon Anderson

  2. Presentation Overview • What is Transfection? • Transfection vs. Transformation • Purpose of Transfection • How it Works • Experimental method/process • Strengths and weaknesses of technique

  3. Transfection • What is Transfection? Transfection is a method of transporting DNA, RNA and/or various macromolecules into an eukaryotic cell by using chemical, lipid or physical based methods. • Methods: (just a few examples…) MethodApplication CaPO4, DEAE DNA Transfection Liposome Based DNA Transfection Polyamine Based DNA Transfection

  4. Transfection vs. Transformation • Transformation: genetically altering cells by transporting in foreign genetic material. • Transfection: the process of transporting genetic material and/or macromolecules into eukaryotic cells through typically non-viral methods.

  5. Purpose/uses of Transfection • Study gene function • Study protein expression • Transfer DNA into embryonic stem cells

  6. How it works • Utilize Chemical, lipid or physical methods (direct microinjection, electroporation, biolistic particle delivery) for transportation of genetic materials or macromolecules.

  7. How it works – Chemical and lipid methods • Neutralize negative charges on DNA • Chemical method: Calcium phosphate; creates precipitates that settle on cells and are taken in. • Lipid or Polymer methods: interact with DNA, promotes binding to cells and uptake via endocytosis.

  8. How it works – Physical methods • Electroporation: use of high voltage to deliver nucleic acids; pores are formed on cell membrane. • Direct Microinjection: Use of a fine needle. Has been used for transfer of DNA into embryonic stem cells. • Biolistic Particle delivery: Uses high-velocity for delivery of nucleic acids and penetration of cell wall.

  9. Experimental method/process(chemical methods) HBS = HEPES-Buffered Saline

  10. Advantages: Provides the ability to transfer in negatively charged molecules into cells with a negatively charged membrane. Liposome-mediated transport of DNA has high efficiency. Good for long-term studies requiring incorporation of genetic material into the chromosome. Disadvantages: Chemical Reagents: not useful for long-term studies. Transfection efficiency is dependent on cell health, DNA quality, DNA quantity, confluency (40-80%) Direct Microinjection and Biolistic Particle delivery is an expensive and at times a difficult method. Advantages/Disadvantages

  11. Another interesting use • “…dermal patches consisting of gene-transfected cultured skin, which secrete endogenous antimicrobial peptides such as B-defensins instead of exogenous antibiotics, can be a new DDS for the treatment of severe burns without decrease in cell viability.” Nobuko Hada, Hiroaki Todo, Fusao Komada, & Kenji Sugubayashi. (2007). Preparation and Evaluation of Gene-Transfected Cultured skin as a Novel Drug Delivery System for Severely Burned Skin. Pharmaceutical Research, Vol. 24, No. 8, p.1473-1479.

  12. References Pictures Used: (in order of appearance) http://www.nordicbiosite.dk/uploads/Transfection.gif Stratagene Transfection Reagents list (see below) Protocols and Applications Guide: www.promega.com http://www.fao.org/docrep/004/t0094e/t0094e03.htm http://electroporation.eu/ http://www3.bio-rad.com http://www.clontech.com/products/detail.asp?tabno=2&catalog_id=631312&page=all http://fredcobio.wordpress.com/2008/03/18/dna-vaccine-delivery-program-at-nci/ http://journals.cambridge.org/fulltext_content/ERM/ERM5_22/S1462399403006562sup002.htm

  13. References Information: • Transfection Reagents: http://www.stratagene.com/lit_items/Transfection_Brochure_BR61__Web.pdf • Protocols and Applications Guide: www.promega.com • http://www.iscid.org/encyclopedia/Transfection_Methods • Nobuko Hada, Hiroaki Todo, Fusao Komada, & Kenji Sugubayashi. (2007). Preparation and Evaluation of Gene-Transfected Cultured skin as a Novel Drug Delivery System for Severely Burned Skin. Pharmaceutical Research, Vol. 24, No. 8, p.1473-1479. • Menuel S, Fontanay S, Clarot I, Duval R.E, Diez L, Marsura A (2008). "Synthesis and Complexation Ability of a Novel Bis- (guanidinium)-tetrakis-(β-cyclodextrin) Dendrimeric Tetrapod as a Potential Gene Delivery (DNA and siRNA) System. Study of Cellular siRNA Transfection". Bioconjugate Chem.19 (12): 2357–2362. doi:10.1021/bc800193p.

  14. Questions?

More Related